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1. Introduction 
The Enhanced Host Controller Interface (EHCI) specification describes the register-level interface for a Host 
Controller for the Universal Serial Bus (USB) Revision 2.0. The specification includes a description of the 
hardware/software interface between system software and the host controller hardware.  

This specification is intended for hardware component designers, system builders and device driver 
(software) developers. The reader is expected to be familiar with the Universal Serial Bus Specification, 
Revision 2.0. In spite of due diligence, there may exist conflicts between this specification and the USB 2.0 
Specification. The USB 2.0 Specification takes precedence on all issues of conflict. 

Some key features of the EHCI specification are: 

•  Full, Robust Support for all USB 2.0 Features. This specification describes a host controller that 
correctly supports all compliant USB 2.0 Low-, Full-, and High-speed devices. This includes new USB 
2.0 features such as split transactions for USB 2.0 Hubs and other extensions to the protocol such as the 
new PING protocol for high-speed OUT endpoints. 

•  Low-risk support for Full- and Low-speed peripherals. The EHCI specification provides support for 
all three device speeds on the root ports by integrating (using) existing hardware and software for USB 
1.1 host controllers for support of Full- and Low-speed devices connected to the root ports. This allows 
the EHCI to focus on efficient support of high-speed operation, without having to accommodate any 
trade-offs in complexity or performance to support Full- and Low-speed devices. 

•  System Power Management. Current PC architectures are providing ubiquitous support for aggressive 
power management. USB is a critical component in delivering a consistent, coherent and robust user 
experience. If the implementation includes PCI configuration registers, then the host controller is 
required to implement a PCI Power Management Interface. 

•  Provides simple, robust solutions to USB 1.1 Host Controller Issues. The EHCI host controller 
specification contains solutions to a myriad of issues, which have proven to be problematic for USB 
host controllers. Some of the issues resolved in the EHCI specification include: Memory thrashing, 
Memory access efficiency, and conflicts with cpu power management. The EHCI architecture provides 
both new specific features and optimizations to its architecture to solve the legacy issues. 

•  Optimized for Best Memory Access Efficiency. The EHCI utilizes a unique method to decrease the 
average number of memory accesses required to execute a USB transaction. Each schedule data 
structure is optimized to describe large client data buffers, thus minimizing the memory footprint and 
amount of memory overhead to traverse the schedule. 

•  Minimized Hardware Complexity. The EHCI provides a simple, asynchronous interface for software 
to provide the host controller with parameterized work items that the host controller uses to execute 
transactions on the USB. The interface allows software to asynchronously add work to the interface 
while the host controller is executing, without any synchronization required. The interface supports a 
simple hardware scatter/gather method for all interface data structures. 

•  Support for 32 and 64-bit Addressing. Over the implementation lifetime of this specification, it is 
expected that EHCI controllers will be used increasingly in architectures that support more than 32-bits 
of addressable memory space. The EHCI includes optional interface extensions that support up to 64-
bits of addressing. 

This specification presents two chapters of pure structural definitions of the register space and schedule 
interface data structures. These definition chapters contain little or no operational requirements or usage 
models. The definition chapters are followed by a detailed description of the operational model requirements 
of the host controller, using the previously defined registers and schedule interface data structures. The 
following list summarizes the organization of this specification: 

•  Section 1.1 EHCI Product Compliance introduces the reader to the EHCI compliance program. 

•  Section 1.2 provides an overview of the architecture of the EHCI Host Controller. 
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•  Chapter 2 Register Interface defines the register spaces of the EHCI Host Controller. 

•  Chapter 3 Data Structures defines the schedule data structures of the EHCI Host Controller. 

•  Chapter 4 Operational Model defines the details of the operational model for the EHCI Host Controller. 
It focuses on the operational requirements of the host controller hardware. It uses example behavioral 
abstractions to describe the operational requirements. 

•  Chapter 5 EHCI Extended Capabilities defines the EHCI-specific extended capability feature and also 
contains descriptions of each defined extended capability. 

•  Appendix A EHCI PCI Power Management Interface defines the details of the PCI Power Management 
Interface for the EHCI Host Controller. 

•  Appendix B EHCI 64-Bit Data Structures defines 64-bit versions of the data structures defined in 
Chapter 3. 

•  Appendix C Debug Port defines the interface to the optional debug port. 

•  Appendix D High Bandwidth Isochronous Rules enumerates the required behavior for the host 
controller execution of high-bandwidth isochronous transactions. 

1.1 EHCI Product Compliance 
Adopters and Contributors of the Enhanced Host Controller Interface Specification for USB have signed the 
Enhanced Host Controller Interface Specification for USB - Contributors Agreement in order to be licensed 
to use and implement this Specification. This Contributors Agreement provides Contributors and Adopters 
with a reciprocal, royalty-free license to certain intellectual property rights from Intel and other Adopters 
and Contributors for their products that are compliant with the Enhanced Host Controller Interface 
Specification for USB. Adopters and Contributors can demonstrate compliance with the Specification 
through the testing program as defined by Intel. 

1.2 Architectural Overview 
A USB Host System is composed of a number of hardware and software layers. Figure 1-1 illustrates a 
conceptual block diagram of the building block layers in a host system that work in concert to support USB 
2.0.  
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Figure 1-1. Universal Serial Bus, Revision 2.0 System Block Diagram 

The component layers are: 

•  Client Driver Software. This software executes on the host PC corresponding to a particular USB 
device. Client software is typically part of the operating system or provided with the USB device. 

•  USB Driver (USBD). The USBD is a system software Bus Driver that abstracts the details of the 
particular host controller driver for a particular operating system.  

•  Host Controller Driver (xHCD). xHCD provides the software layer between a specific Host Controller 
hardware and the USBD. The details of the host controller driver depend on the particular host 
controller hardware register interface definition. 

•  Host Controller (xHC). The host controller is the specific hardware implementation of the host 
controller. There is one host controller specification for the high-speed USB 2.0 functionality and two 
specifications for Full- and Low-speed host controllers. The Universal Host Controller Interface 
(UHCI) or Open Host Controller Interface for USB (OHCI) are the two industry standard USB 1.1 host 
controller interfaces. 

•  USB Device. This is a hardware device that performs a useful end-user function. Interactions with USB 
devices flow from the applications through the software and hardware layers to the USB devices. 

A USB 2.0 Host Controller includes one high-speed mode host controller and 0 or more USB 1.1 host 
controllers (see Figure 1-2). The high-speed host controller implements an EHCI interface. It is used for all 
high-speed communications to high-speed-mode devices connected to the root ports of the USB 2.0 host 
controller. This specification allows communications to Full- and Low-speed devices connected to the root 
ports of the USB 2.0 host controller to be provided by companion USB 1.1 host controllers. If an 
implementation does not include companion host controllers, the host controller must include a high-speed 
device permanently attached to each of the EHCI ports the implementation is planning to utilize. The EHCI 
controller cannot work with a Full- or Low-speed device. 

This architecture allows the USB 2.0 host controller to provide USB functionality as long as there is at least 
USB 1.1 software support in the resident operating system. Full USB 2.0 functionality is delivered when 
both USB 1.1 and EHCI software is available in the operating system. The port transceiver routing logic is 
key to delivering this flexible operating environment. The state of the routing logic (see Figure 1-2) initially 
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depends on whether software has configured the EHCI controller. Once the EHCD driver has configured the 
EHCI controller, it can specifically release the transceiver to the companion host controller port register if 
the attached device is not a high-speed device. When the operating system does not include support for the 
EHCI controller, the ports are default-routed to the companion host controllers and existing USB support for 
Full- and Low-speed devices remains. 

Port 1

Companion USB HCs
High-Speed Mode

(Enhanced Interface) USB HC

USB 2.0 Host Controller (HC)

Port 1 Port 2

Port Owner
Control(s)

Port 1 Port 2

Port Routing Logic

Port N

HC Control Logic/Data Buffering Enhanced HC Control Logic
Enhanced Data Buffering

Port 2 Port N

Port N
 

Figure 1-2. USB 2.0 Host Controller 

The Companion Host Controller (cHC) may be any USB 1.1 host controller (e.g. OHCI or UHCI). The 
companion host controllers always manage Full- and Low-speed USB devices connected to the root ports. 
The cHCs have no knowledge of the high-speed-mode host controller. They can possibly be integrated into a 
USB 2.0 host controller with no modification.  

High-speed devices are always routed to and controlled by the EHCI host controller (eHC). When running 
and configured, the eHC is the default owner of all the root ports. The eHC and its driver initially detect all 
device attaches. It has additional control bits visible in each port register to manage the routing logic. For 
example: if the attached device is not a high-speed device, the eHC driver releases ownership of the port 
(and thus control of the device) to a companion host controller. For that port, enumeration starts over from 
the initial attach detect point and the device is enumerated under the cHC. Otherwise, the eHC retains 
ownership of the port and the device completes enumeration under the eHC. 

This specification does not include descriptions for either the Universal Host Controller Interface (UHCI) or 
the Open Host Controller Interface for USB (OHCI for USB). This specification defines the register and 
schedule interfaces to an Enhanced Host Controller Interface.  

1.2.1 Interface Architecture 
The EHCI interface defines three interface spaces (see Figure 1-3): 

•  PCI Configuration Space. If the implementation includes PCI registers, they are used for system 
component enumeration and PCI power management. 

•  Register Space. Implementation-specific parameters and capabilities, plus operational control and 
status registers. This space, normally referred to as I/O space, must be implemented as memory-mapped 
I/O space. 

•  Schedule Interface Space. This is typically memory allocated and managed by the eHC Driver for the 
periodic and asynchronous schedules. 
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Figure 1-3. General Architecture of Enhanced Host Controller Interface 

The EHCI provides support for two categories of transfer types: asynchronous and periodic. Periodic 
transfer types include both isochronous and interrupt. Asynchronous transfer types include control and bulk. 
Figure 1-3 illustrates that the EHCI schedule interface provides separate schedules for each category of 
transfer type.  

The periodic schedule is based on a time-oriented frame list that represents a sliding window of time of host 
controller work items. All isochronous and interrupt transfers are serviced via the periodic schedule. The 
asynchronous schedule is a simple circular list of schedule work items that provides a round-robin service 
opportunity for all asynchronous transfers. 

The EHCI host controller interface allows software to enable or disable each schedule. This allows system 
software to keep the USB alive with SOF traffic, but while both the schedules are disabled, the host 
controller will not access the schedule space. This keeps the host controller from accessing main memory in 
most implementations, and enables mobile systems to better manage CPU power (see Section 4.13). 

1.2.2 EHCI Schedule Data Structures 
The EHCI manages all interrupt, bulk and control transfer types using a simple buffer queuing data 
structure. The queuing data structure provides automatic, in-order streaming of data transfers. Software can 
asynchronously add data buffers to a queue and maintain streaming. USB-defined short packet semantics are 
fully supported on all processing boundary conditions without software intervention. 

Split transactions for Full- and Low-speed non-isochronous endpoints are managed with the same data 
structures. The split transaction protocol is managed as a simple extension to the high-speed execution 
model. 

High-speed and Full-speed isochronous transfers are managed using dedicated (and different) interface data 
structures. These data structures are optimized for the variability per data payload and time-oriented 
characteristics of the isochronous transfer type. 

1.2.3 Root Hub Emulation 
The host controller of a USB bus is required to implement the root hub. The operational register space 
contains port registers that contain the minimum hardware status and control needed to manage each port 
within the USB Specification. The host controller traverses the EHCI schedules and encounters work items 
that result in the host controller executing USB transactions. These transactions are broadcast through all 
enabled root ports to attached downstream USB devices.  

The port registers provide system software with the control and status information required to manipulate 
the port in accordance with the USB Specification, Revision 2.0. The supported features include: detecting 
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device connects, disconnects, performing device resets, manipulating port power and managing port power 
management capabilities. 

System software should provide an abstraction to the USB system software stack that allows the root hub 
ports to be manipulated by the system as if they were ports on an external hub. 
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2. Register Interface 
The Enhanced USB Host Controller contains two sets of software accessible hardware registers Memory-
mapped Host Controller Registers and optional PCI configuration registers. Note that the PCI configuration 
registers are only needed for PCI devices that implement the Host Controller.  

•  PCI Configuration Registers (For PCI devices). In addition to the normal PCI header, power 
management, and device-specific registers, two registers are needed in the PCI Configuration space to 
support USB. The normal PCI header and device specific registers are beyond the scope of this 
document (The CLASSC register is shown in this document). Note that HCD does not interact with the 
PCI configuration space. This space is used only by the PCI enumerator to identify the USB Host 
Controller, and assign the appropriate system resources.  

•  Memory-mapped USB Host Controller Registers. This block of registers is memory-mapped into 
non-cacheable memory (see Figure 1-3). This memory space must begin on a DWord (32-bit) boundary. 
This register space is divided into two sections: a set of read-only capability registers and a set of 
read/write operational registers. Table 2-1, describes each register space. 

Note that host controllers are not required to support exclusive-access mechanisms (such as PCI LOCK) 
for accesses to the memory-mapped register space. Therefore, if software attempts exclusive-access 
mechanisms to the host controller memory-mapped register space, the results are undefined. 

Table 2-1. Enhanced Interface Register Sets 

Offset  Register Set Explanation 

0 to N-1 Capability Registers 
(Section 2.2) 

The capability registers specify the limits, restrictions, 
and capabilities of a host controller implementation. 
These values are used as parameters to the host 
controller driver. 

N to 
N+M-1 

Operational Registers 
(Section 2.3) 

The operational registers are used by system 
software to control and monitor the operational state 
of the host controller. 

The reserved bits defined in this revision of the specification may be allocated in later revisions. Software 
should not assume reserved bits are always zero and should preserve these bits when writing to modifiable 
registers. The following notation is used to describe register access attributes: 

RO Read Only. If a register is read only, writes have no effect.  

WO Write Only. If a register is write only, reads return a zero for all bit positions. 

R/W Read/Write. A register with this attribute can be read and written. Note that individual bits in some 
read/write registers may be read only. 

R/WC Read/Write Clear. A register bit with this attribute can be read and written. However, a write of a 1 
clears (sets to 0) the corresponding bit and a write of a 0 has no effect. 

Registers in the auxiliary well are reset under different conditions than the registers in the core well. The 
auxiliary well, memory-space registers are initialized to their default values in the following cases: 

•  initial power-up of the auxiliary power well, or 

•  a value of 1b in HCReset (see Section 2.3.1) 

The core well, memory-space registers are initialized to their default values in the following cases: 

•  assertion of the system (core-well) hardware reset, or 

•  a value of 1b in HCReset, or 

•  transition from the PCI Power Management D3hot state to the D0 state 
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PCI configuration-space registers implemented in the auxiliary power well are reset under different 
conditions than the registers in the core well. The auxiliary well, configuration-space registers are initialized 
to their default value in the following case: 

•  initial power-up of the auxiliary power well 

The core well PCI configuration-space registers are initialized to their default values in the following cases: 

•  assertion of the system (core-well) hardware reset, or 

•  transition from the PCI Power Management D3hot state to the D0 state 

Exceptions to these reset conditions will be defined in the associated register section. 

2.1 PCI Configuration Registers (USB) 
Table 2-2 lists the PCI configuration space register for an EHCI controller. The following subsections 
describe details about each set of registers defined. 

Table 2-2. PCI Configuration Space Registers 

Configuration 
Offset 

Mnemonic Register Power 
Well 

Register 
Access 

00−08h   Register implementation as needed 
for specific PCI device 

Core   

09−0Bh CLASSC Class Code Core RO 

0C−0Fh   Register implementation as needed 
for specific PCI device 

Core   

10−13h USBBASE Base Address to Memory-mapped 
Host Controller Register Space 

Core R/W 

14−5Fh   Register implementation as needed 
for specific PCI device 

Core   

60h SBRN Serial Bus Release Number Core RO 

61h FLADJ Frame Length Adjustment Register Aux R/W 

62-63h PORTWAKECAP Port wake capabilities register 
(OPTIONAL) 

Aux R/W 

64−FFh   Register implementation as needed 
for specific PCI device 

Core   

EECP+0h1 USBLEGSUP USB Legacy Support EHCI Extended 
Capability Register 

Aux RO, R/W 

EECP+4h USBLEGCTLSTS USB Legacy Support Control and 
Status Register 

Aux R/W, R/WC 

1 The EECP field is in the HCCPARAMS register, see Section 2.2.4. 

2.1.1 PWRMGT   PCI Power Management Interface 
EHCI Host Controller implementations are required to implement the PCI Power Management registers as 
defined in the PCI Bus Power Management Interface Specification Revision 1.1.  Refer to Appendix A for 
the EHCI operational requirements for PCI Power Management.  
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2.1.2 CLASSC   CLASS CODE REGISTER  
Address Offset: 09−0Bh 
Default Value: 0C0320h 
Attribute: RO 
Size: 24 bits 
 

This register contains the device programming interface information related to the Sub-Class Code and Base 
Class Code definition. This register also identifies the Base Class Code and the function sub-class in relation 
to the Base Class Code. 

 

Bit Description 

23:16 Base Class Code (BASEC).  0Ch= Serial Bus controller. 
15:8 Sub-Class Code (SCC). 03h=Universal Serial Bus Host Controller. 
7:0 Programming Interface (PI). 20h=USB 2.0 Host Controller that conforms to this specification. 

2.1.3 USBBASE   Register Space Base Address Register  
Address Offset: 10−13h 
Default Value: Implementation Dependent 
Attribute: R/W 
Size: 32 bits 
 
This register contains the base address of the DWord-aligned memory-mapped host controller Registers. The 
number of writable bits in this register determines the actual size of the required memory space window. The 
minimum required is specified in this specification. Individual implementations may vary. 

 

Bit Description 

31:8 Base Address   R/W.  Corresponds to memory address signals [31:8].  
7:3 Reserved.   RO.  This bits are read only and hardwired to zero. 

2:1 Type.   RO. This field has two valid values: 
Value Meaning 

00b May only be mapped into 32-bit addressing space (Recommended). 
10b May be mapped into 64-bit addressing space.  

0 Reserved   RO. This bit is read only and hardwired to zero. 
 

2.1.4 SBRN   Serial Bus Release Number Register  
Address Offset: 60h 
Default Value: See Description below 
Attribute: RO 
Size: 8 bits 
 
This register contains the release of the Universal Serial Bus Specification with which this Universal Serial 
Bus Host Controller module is compliant. 

 

Bit Description 

7:0 Serial Bus Specification Release Number. All other combinations are reserved. 
Bits[7:0] Release Number 
20h  Release 2.0 
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2.1.5 Frame Length Adjustment Register (FLADJ) 
Address Offset: 61h 
Default Value: 20h 
Attribute: R/W 
Size: 8 bits 
 

This register is in the auxiliary power well. This feature is used to adjust any offset from the clock source 
that generates the clock that drives the SOF counter. When a new value is written into these six bits, the 
length of the frame is adjusted. Its initial programmed value is system dependent based on the accuracy of 
hardware USB clock and is initialized by system BIOS. This register should only be modified when the 
HCHalted bit in the USBSTS register is a one.  Changing value of this register while the host controller is 
operating yields undefined results. It should not be reprogrammed by USB system software unless the 
default or BIOS programmed values are incorrect, or the system is restoring the register while returning 
from a suspended state.  

Bit Description 

7:6 Reserved. These bits are reserved for future use and should read as zero. 

5:0 Frame Length Timing Value. Each decimal value change to this register corresponds to 16 high-
speed bit times. The SOF cycle time (number of SOF counter clock periods to generate a SOF 
micro-frame length) is equal to 59488 + value in this field. The default value is decimal 32 (20h), 
which gives a SOF cycle time of 60000.  

    Frame Length 
(# High Speed bit times) FLADJ Value 
       (decimal)     (decimal) 

59488 0 (00h) 
59504 1 (01h) 
59520 2 (02h) 
…  
59984 31 (1Fh) 
60000 32 (20h) 
… 
60480 62 (3Eh) 
60496 63 (3Fh) 
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2.1.6 Port Wake Capability Register (PORTWAKECAP) 
Address Offset: 62h 
Default Value: Implementation Dependent 
Attribute: R/W 
Size: 16 bits 
 

This register is optional. When implemented this register is in the auxiliary power well. The intended use of 
this register is to establish a policy about which ports are to be used for wake events. Bit positions 1-15 in 
the mask correspond to a physical port implemented on the current EHCI controller. A one in a bit position 
indicates that a device connected below the port can be enabled as a wake-up device and the port may be 
enabled for disconnect/connect or over-current events as wake-up events. This is an information only mask 
register. The bits in this register DO NOT affect the actual operation of the EHCI host controller. The 
system-specific policy can be established by BIOS initializing this register to a system-specific value. 
System software uses the information in this register when enabling devices and ports for remote wake-up. 

Bit Description 

15:0 Port Wake Up Capability Mask. Bit position zero of this register indicates whether the register is 
implemented. A one in bit position zero indicates that the register is implemented. Bit positions 1 
through 15 correspond to a physical port implemented on this host controller. For example, bit 
position 1 corresponds to port 1, position 2 to port 2, etc. 

2.1.7 USBLEGSUP   USB Legacy Support Extended Capability 
Offset: EECP + 00h 
Default Value Implementation Dependent 
Attribute RO, R/W 
Size: 32 bits 

This register is an EHCI extended capability register. It includes a specific function section and a pointer to 
the next EHCI extended capability. This register is used by pre-OS software (BIOS) and the operating 
system to coordinate ownership of the EHCI host controller. See Section 5.1 for details.  

Table 2–3. USBLEGSUP   USB Legacy Support Extended Capability 

Bit Description 

31:25 Reserved. These bits are reserved and must be set to zero. 
24 HC OS Owned Semaphore   R/W. 0=Default. System software sets this bit to request 

ownership of the EHCI controller. Ownership is obtained when this bit reads as one and 
the HC BIOS Owned Semaphore bit reads as zero. 

23:17 Reserved. These bits are reserved and must be set to zero. 
16 HC BIOS Owned Semaphore   R/W. 0=Default. The BIOS sets this bit to establish 

ownership of the EHCI controller. System BIOS will set this bit to a zero in response to a 
request for ownership of the EHCI controller by system software. 

15:8 Next EHCI Extended Capability Pointer   RO. This field points to the PCI 
configuration space offset of the next extended capability pointer. A value of 00h 
indicates the end of the extended capability list. 

7:0 Capability ID   RO. This field identifies the extended capability. A value of 01h 
identifies the capability as Legacy Support. This extended capability requires one 
additional 32-bit register for control/status information, and this register is located at 
offset EECP+04h. 
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2.1.8 USBLEGCTLSTS   USB Legacy Support Control/Status 
Offset: EECP + 04h 
Default Value 00000000h 
Attribute RO, R/W, R/WC 
Size: 32 bits 

Pre-OS (BIOS) software uses this register to enable SMIs for every EHCI/USB event it needs to track. Bits 
[21:16] of this register are simply shadow bit of USBSTS register [5:0].  

Table 2–4. USBLEGCTLSTS   USB Legacy Support Control/Status 

Bit Description 

31 SMI on BAR   R/WC.  0=Default. This bit is set to one whenever the Base Address 
Register (BAR) is written. 

30 SMI on PCI Command   R/WC. 0=Default. This bit is set to one whenever the PCI 
Command Register is written. 

29 SMI on OS Ownership Change   R/WC. 0=Default. This bit is set to one whenever 
the HC OS Owned Semaphore bit in the USBLEGSUP register transitions from 1 to a 0 
or 0 to a 1 

28:22 Reserved.  These bits are reserved and should be zero. 
21 SMI on Async Advance   RO.  0=Default. Shadow bit of the Interrupt on Async 

Advance bit in the USBSTS register see Section 2.3.2 for definition.  
To set this bit to a zero, system software must write a one to the Interrupt on Async 
Advance bit in the USBSTS register. 

20 SMI on Host System Error   RO.  0=Default. Shadow bit of Host System Error bit in 
the USBSTS register, see Section 2.3.2 for definition and effects of the events 
associated with this bit being set to a one.  
To set this bit to a zero, system software must write a one to the Host System Error bit in 
the USBSTS register. 

19 SMI on Frame List Rollover   RO. 0=Default. Shadow bit of Frame List Rollover bit in 
the USBSTS register see Section 2.3.2 for definition.  
To set this bit to a zero, system software must write a one to the Frame List Rollover bit 
in the USBSTS register.  

18 SMI on Port Change Detect   RO.  0=Default. Shadow bit of Port Change Detect bit in 
the USBSTS register see Section 2.3.2 for definition.  
To set this bit to a zero, system software must write a one to the Port Change Detect bit 
in the USBSTS register. 

17 SMI on USB Error   RO.  0=Default. Shadow bit of USB Error Interrupt (USBERRINT) 
bit in the USBSTS register see Section 2.3.2 for definition.  
 To set this bit to a zero, system software must write a one to the USB Error Interrupt bit 
in the USBSTS register.  

16 SMI on USB Complete   RO.  0=Default. Shadow bit of USB Interrupt (USBINT) bit in 
the USBSTS register see Section 2.3.2 for definition.  
To set this bit to a zero, system software must write a one to the USB Interrupt bit in the 
USBSTS register.  

15 SMI on BAR Enable   R/W. 0=Default. When this bit is one and SMI on BAR is one, 
then the host controller will issue an SMI. 

14 SMI on PCI Command Enable   R/W. 0=Default. When this bit is one and SMI on PCI 
Command is one, then the host controller will issue an SMI. 

13 SMI on OS Ownership Enable    R/W. 0=Default. When this bit is a one AND the OS 
Ownership Change bit is one, the host controller will issue an SMI. 

12:6 Reserved.  These bits are reserved and should be zero. 
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Table 2–4. USBLEGCTLSTS   USB Legacy Support Control/Status (cont.) 

Bit Description 

5 SMI on Async Advance Enable   R/W. 0=Default. When this bit is a one, and the SMI 
on Async Advance bit (above) in this register is a one, the host controller will issue an 
SMI immediately. E 

4 SMI on Host System Error Enable   R/W. 0=Default. When this bit is a one, and the 
SMI on Host System Error bit (above) in this register is a one, the host controller will 
issue an SMI immediately. E 

3 SMI on Frame List Rollover Enable   R/W. 0=Default. When this bit is a one, and the 
SMI on Frame List Rollover bit (above) in this register is a one, the host controller will 
issue an SMI immediately. E 

2 SMI on Port Change Enable   R/W. 0=Default. When this bit is a one, and the SMI on 
Port Change Detect bit (above) in this register is a one, the host controller will issue an 
SMI immediately. E 

1 SMI on USB Error Enable   R/W. 0=Default. When this bit is a one, and the SMI on 
USB Error bit (above) in this register is a one, the host controller will issue an SMI 
immediately. E 

0 USB SMI Enable   R/W. 0=Default. When this bit is a one, and the SMI on USB 
Complete bit (above) in this register is a one, the host controller will issue an SMI 
immediately. E 

Notes:  
A. For all enable register bits, 1= Enabled, 0= Disabled 
B. SMI – System Management Interrupt 
C. BAR – Base Address Register 
D. MSE – Memory Space Enable 
E. SMI’s are independent of the interrupt threshold value 

2.2 Host Controller Capability Registers 
These registers specify the limits, restrictions and capabilities of the host controller implementation.  

Table 2-5. Enhanced Host Controller Capability Registers 

Offset  Size Mnemonic Power Well Register Name 

00h 1 CAPLENGTH Core Capability Register Length 

01h 1 Reserved Core N/A 

02h 2 HCIVERSION Core Interface Version Number 

04h 4 HCSPARAMS Core Structural Parameters 

08h 4 HCCPARAMS Core Capability Parameters 

0Ch 8 HCSP-PORTROUTE Core Companion Port Route Description 
 

2.2.1 CAPLENGTH   Capability Registers Length 
Address: Base+ (00h) 
Default Value Implementation Dependent 
Attribute: RO 
Size: 8 bits 
 

This register is used as an offset to add to register base to find the beginning of the Operational Register 
Space. 
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2.2.2 HCIVERSION   Host Controller Interface Version Number 
Address: Base+ (02h) 
Default Value: 0100h 
Attribute RO 
Size: 16 bits 
 

This is a two-byte register containing a BCD encoding of the EHCI revision number supported by this host 
controller. The most significant byte of this register represents a major revision and the least significant byte 
is the minor revision.  

2.2.3 HCSPARAMS   Structural Parameters 
Address: Base+ (04h) 
Default Value Implementation Dependent 
Attribute RO 
Size: 32 bits  
 

This is a set of fields that are structural parameters: Number of downstream ports, etc. 

Table 2-6.HCSPARAMS   Host Controller Structural Parameters 

Bit Description 

31:24 Reserved. These bits are reserved and should be set to zero. 
23:20 Debug Port Number. Optional. This register identifies which of the host controller ports 

is the debug port. The value is the port number (one-based) of the debug port. A non-
zero value in this field indicates the presence of a debug port. The value in this register 
must not be greater than N_PORTS (see below). 

19:17 Reserved. These bits are reserved and should be set to zero. 
16 Port Indicators (P_INDICATOR). This bit indicates whether the ports support port 

indicator control. When this bit is a one, the port status and control registers include a 
read/writeable field for controlling the state of the port indicator. See Section 2.3.9 for 
definition of the port indicator control field.  

15:12 Number of Companion Controller (N_CC). This field indicates the number of 
companion controllers associated with this USB 2.0 host controller.  
A zero in this field indicates there are no companion host controllers. Port-ownership 
hand-off is not supported. Only high-speed devices are supported on the host controller 
root ports. 
A value larger than zero in this field indicates there are companion USB 1.1 host 
controller(s). Port-ownership hand-offs are supported. High, Full- and Low-speed 
devices are supported on the host controller root ports. 

11:8 Number of Ports per Companion Controller (N_PCC). This field indicates the number 
of ports supported per companion host controller. It is used to indicate the port routing 
configuration to system software.  
For example, if N_PORTS has a value of 6 and N_CC has a value of 2 then N_PCC 
could have a value of 3. The convention is that the first N_PCC ports are assumed to be 
routed to companion controller 1, the next N_PCC ports to companion controller 2, etc. 
In the previous example, the N_PCC could have been 4, where the first 4 are routed to 
companion controller 1 and the last two are routed to companion controller 2. 
The number in this field must be consistent with N_PORTS and N_CC.  
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Table 2-6.HCSPARAMS   Host Controller Structural Parameters (cont.) 

Bit Description 

7 Port Routing Rules. This field indicates the method used by this implementation for 
how all ports are mapped to companion controllers. The value of this field has the 
following interpretation: 

Value Meaning 
0 The first N_PCC ports are routed to the lowest numbered function 

companion host controller, the next N_PCC port are routed to the next 
lowest function companion controller, and so on. 

1 The port routing is explicitly enumerated by the first N_PORTS elements 
of the HCSP-PORTROUTE array. 

6:5 Reserved. These bits are reserved and should be set to zero. 
4 Port Power Control (PPC). This field indicates whether the host controller 

implementation includes port power control. A one in this bit indicates the ports have 
port power switches. A zero in this bit indicates the port do not have port power 
switches. The value of this field affects the functionality of the Port Power field in each 
port status and control register (see Section 2.3.8). 

3:0 N_PORTS. This field specifies the number of physical downstream ports implemented 
on this host controller. The value of this field determines how many port registers are 
addressable in the Operational Register Space (see Table 2-8). Valid values are in the 
range of 1H to FH.  
A zero in this field is undefined. 

 

2.2.4 HCCPARAMS   Capability Parameters 
Address: Base+ (08h) 
Default Value Implementation Dependent 
Attribute RO 
Size: 32 bits  
 

Multiple Mode control (time-base bit functionality), addressing capability 

Table 2-7. HCCPARAMS Host Controller Capability Parameters 

Bit Description 

31:16 Reserved. These bits are reserved and should be set to zero. 
15:8 EHCI Extended Capabilities Pointer (EECP). Default = Implementation Dependent. 

This optional field indicates the existence of a capabilities list. A value of 00h indicates 
no extended capabilities are implemented. A non-zero value in this register indicates the 
offset in PCI configuration space of the first EHCI extended capability. The pointer value 
must be 40h or greater if implemented to maintain the consistency of the PCI header 
defined for this class of device. 

7:4 Isochronous Scheduling Threshold. Default = implementation dependent. This field 
indicates, relative to the current position of the executing host controller, where software 
can reliably update the isochronous schedule. When bit [7] is zero, the value of the least 
significant 3 bits indicates the number of micro-frames a host controller can hold a set of 
isochronous data structures (one or more) before flushing the state. When bit [7] is a 
one, then host software assumes the host controller may cache an isochronous data 
structure for an entire frame. Refer to Section 4.7.2.1 for details on how software uses 
this information for scheduling isochronous transfers. 

3 Reserved. This bit is reserved and should be set to zero.  
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Table 2-7. HCCPARAMS Host Controller Capability Parameters (cont.) 

Bit Description 

2 Asynchronous Schedule Park Capability. Default = Implementation dependent. If this 
bit is set to a one, then the host controller supports the park feature for high-speed 
queue heads in the Asynchronous Schedule. The feature can be disabled or enabled 
and set to a specific level by using the Asynchronous Schedule Park Mode Enable and 
Asynchronous Schedule Park Mode Count fields in the USBCMD register. 

1 Programmable Frame List Flag. Default = Implementation dependent. If this bit is set 
to a zero, then system software must use a frame list length of 1024 elements with this 
host controller. The USBCMD register Frame List Size field is a read-only register and 
should be set to zero. 
If set to a one, then system software can specify and use a smaller frame list and 
configure the host controller via the USBCMD register Frame List Size field. The frame 
list must always be aligned on a 4K page boundary. This requirement ensures that the 
frame list is always physically contiguous. 

0 64-bit Addressing Capability1. This field documents the addressing range capability of 
this implementation. The value of this field determines whether software should use the 
data structures defined in Section 3 (32-bit) or those defined in Appendix B (64-bit). 
Values for this field have the following interpretation: 

0b data structures using 32-bit address memory pointers 
1b data structures using 64-bit address memory pointers  

[1] This is not tightly coupled with the USBBASE address register mapping control. The 64-bit Addressing 
Capability bit indicates whether the host controller can generate 64-bit addresses as a master. The USBBASE 
register indicates the host controller only needs to decode 32-bit addresses as a slave. 

2.2.5 HCSP-PORTROUTE   Companion Port Route Description 
Address: Base+ (0Ch) 
Default Value Implementation Dependent 
Attribute RO 
Size: 60 bits  
 

This optional field is valid only if Port Routing Rules field in the HCSPARAMS register is set to a one.  

The rules for organizing companion host controllers and an EHCI host controllers within PCI space are 
described in detail in Section 4.2. This field is used to allow a host controller implementation to explicitly 
described to which companion host controller each implemented port is mapped.  

This field is a 15-element nibble array (each 4 bits is one array element). Each array location corresponds 
one-to-one with a physical port provided by the host controller (e.g. PORTROUTE[0] corresponds to the 
first PORTSC port, PORTROUTE[1] to the second PORTSC port, etc.). The value of each element indicates 
to which of the companion host controllers this port is routed. Only the first N_PORTS elements have valid 
information. A value of zero indicates that the port is routed to the lowest numbered function companion 
host controller. A value of one indicates that the port is routed to the next lowest numbered function 
companion host controller, and so on. 
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2.3 Host Controller Operational Registers 
This section defines the enhanced host controller operational registers. These registers are located after the 
capabilities registers (see Section 2.1.7). The operational register base must be DWord aligned and is 
calculated by adding the value in the first capabilities register (CAPLENGTH, Section 2.2.1) to the base 
address of the enhanced host controller register address space. All registers are 32 bits in length. Software 
should read and write these registers using only DWord accesses. 

These registers are divided into two sets. The first set at addresses 00h to 3Fh are implemented in the core 
power well. The second set at addresses 40h to the end of the implemented register space are implemented in 
the auxiliary power well. 

Table 2-8. Host Controller Operational Registers 

Offset  Mnemonic Register Name Power Well Section 

00h USBCMD USB Command  Core 2.3.1 

04h USBSTS USB Status Core 2.3.2 

08h USBINTR USB Interrupt Enable Core 2.3.3 

0Ch FRINDEX USB Frame Index Core 2.3.4 

10h CTRLDSSEGMENT 4G Segment Selector Core 2.3.5 

14h PERIODICLISTBASE Frame List Base Address Core 2.3.6 

18h ASYNCLISTADDR Next Asynchronous List Address Core 2.3.7 

1C-3Fh Reserved  Core  

40h CONFIGFLAG Configured Flag Register Aux 2.3.8 

44h PORTSC(1-N_PORTS) Port Status/Control Aux 2.3.9 
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2.3.1 USBCMD   USB Command Register 
Address: Operational Base+ (00h) 
Default Value: 00080000h (00080B00h if Asynchronous Schedule Park Capability is a one) 
Attribute RO, R/W (field dependent), WO 
Size 32 bits 

The Command Register indicates the command to be executed by the serial bus host controller. Writing to 
the register causes a command to be executed.  

Table 2-9. USBCMD – USB Command Register Bit Definitions 

Bit Description 

31:24 Reserved. These bits are reserved and should be set to zero. 
23:16 Interrupt Threshold Control   R/W. Default 08h. This field is used by system software 

to select the maximum rate at which the host controller will issue interrupts. The only 
valid values are defined below. If software writes an invalid value to this register, the 
results are undefined.  

Value Maximum Interrupt Interval 
00h Reserved 
01h 1 micro-frame 
02h 2 micro-frames 
04h 4 micro-frames  
08h 8 micro-frames (default, equates to 1 ms) 
10h 16 micro-frames (2 ms) 
20h 32 micro-frames (4 ms) 
40h 64 micro-frames (8 ms) 

Refer to Section 4.15 for interrupts affected by this register. Any other value in this 
register yields undefined results. 
Software modifications to this bit while HCHalted bit is equal to zero results in undefined 
behavior. 

15:12 Reserved. These bits are reserved and should be set to zero. 
11 Asynchronous Schedule Park Mode Enable (OPTIONAL)   RO or R/W. If the 

Asynchronous Park Capability bit in the HCCPARAMS register is a one, then this bit 
defaults to a 1h and is R/W. Otherwise the bit must be a zero and is RO. Software uses 
this bit to enable or disable Park mode. When this bit is one, Park mode is enabled. 
When this bit is a zero, Park mode is disabled. 

10 Reserved. This bit is reserved and should be set to zero. 
9:8 Asynchronous Schedule Park Mode Count (OPTIONAL)   RO or R/W. If the 

Asynchronous Park Capability bit in the HCCPARAMS register is a one, then this field 
defaults to 3h and is R/W. Otherwise it defaults to zero and is RO. It contains a count of 
the number of successive transactions the host controller is allowed to execute from a 
high-speed queue head on the Asynchronous schedule before continuing traversal of 
the Asynchronous schedule. See Section 4.10.3.2 for full operational details. Valid 
values are 1h to 3h. Software must not write a zero to this bit when Park Mode Enable is 
a one as this will result in undefined behavior. 
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Table 2-9. USBCMD – USB Command Register Bit Definitions (cont.) 

Bit Description 

7 Light Host Controller Reset (OPTIONAL)   R/W. This control bit is not required. If 
implemented, it allows the driver to reset the EHCI controller without affecting the state 
of the ports or the relationship to the companion host controllers. For example, the 
PORSTC registers should not be reset to their default values and the CF bit setting 
should not go to zero (retaining port ownership relationships).  
A host software read of this bit as zero indicates the Light Host Controller Reset has 
completed and it is safe for host software to re-initialize the host controller. A host 
software read of this bit as a one indicates the Light Host Controller Reset has not yet 
completed. 
If not implemented a read of this field will always return a zero. 

6 Interrupt on Async Advance Doorbell   R/W. This bit is used as a doorbell by 
software to tell the host controller to issue an interrupt the next time it advances 
asynchronous schedule. Software must write a 1 to this bit to ring the doorbell.  
When the host controller has evicted all appropriate cached schedule state, it sets the 
Interrupt on Async Advance status bit in the USBSTS register. If the Interrupt on Async 
Advance Enable bit in the USBINTR register is a one then the host controller will assert 
an interrupt at the next interrupt threshold. See Section 4.8.2 for operational details. 
The host controller sets this bit to a zero after it has set the Interrupt on Async Advance 
status bit in the USBSTS register to a one. 
Software should not write a one to this bit when the asynchronous schedule is disabled. 
Doing so will yield undefined results. 

5 Asynchronous Schedule Enable   R/W. Default 0b. This bit controls whether the host 
controller skips processing the Asynchronous Schedule. Values mean: 

0b Do not process the Asynchronous Schedule 
1b Use the ASYNCLISTADDR register to access the Asynchronous Schedule. 

4 Periodic Schedule Enable   R/W. Default 0b. This bit controls whether the host 
controller skips processing the Periodic Schedule. Values mean: 

0b Do not process the Periodic Schedule 
1b Use the PERIODICLISTBASE register to access the Periodic Schedule. 

3:2 Frame List Size   (R/W or RO). Default 00b. This field is R/W only if Programmable 
Frame List Flag in the HCCPARAMS registers is set to a one. This field specifies the 
size of the frame list. The size the frame list controls which bits in the Frame Index 
Register should be used for the Frame List Current index. Values mean: 

00b 1024 elements (4096 bytes) Default value 
01b 512 elements (2048 bytes) 
10b 256 elements (1024 bytes) – for resource-constrained environments 
11b Reserved 
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Table 2-9. USBCMD – USB Command Register Bit Definitions (cont.) 

Bit Description 

1 Host Controller Reset (HCRESET)   R/W. This control bit is used by software to reset 
the host controller. The effects of this on Root Hub registers are similar to a Chip 
Hardware Reset.  
When software writes a one to this bit, the Host Controller resets its internal pipelines, 
timers, counters, state machines, etc. to their initial value. Any transaction currently in 
progress on USB is immediately terminated. A USB reset is not driven on downstream 
ports. 
PCI Configuration registers are not affected by this reset. All operational registers, 
including port registers and port state machines are set to their initial values. Port 
ownership reverts to the companion host controller(s), with the side effects described in 
Section 4.2. Software must reinitialize the host controller as described in Section 4.1 in 
order to return the host controller to an operational state. 
This bit is set to zero by the Host Controller when the reset process is complete. 
Software cannot terminate the reset process early by writing a zero to this register.  
Software should not set this bit to a one when the HCHalted bit in the USBSTS register 
is a zero. Attempting to reset an actively running host controller will result in undefined 
behavior. 

0 Run/Stop (RS)  R/W.  Default 0b. 1=Run. 0=Stop. When set to a 1, the Host Controller 
proceeds with execution of the schedule. The Host Controller continues execution as 
long as this bit is set to a 1. When this bit is set to 0, the Host Controller completes the 
current and any actively pipelined transactions on the USB and then halts. The Host 
Controller must halt within 16 micro-frames after software clears the Run bit. The HC 
Halted bit in the status register indicates when the Host Controller has finished its 
pending pipelined transactions and has entered the stopped state. Software must not 
write a one to this field unless the host controller is in the Halted state (i.e. HCHalted in 
the USBSTS register is a one). Doing so will yield undefined results. 
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2.3.2 USBSTS   USB Status Register 
Address: Operational Base + (04h) 
Default Value: 00001000h 
Attribute RO, R/W, R/WC, (field dependent) 
Size 32 bits 

This register indicates pending interrupts and various states of the Host Controller. The status resulting from 
a transaction on the serial bus is not indicated in this register. Software sets a bit to 0 in this register by 
writing a 1 to it.  See Section 4.15 for additional information concerning USB interrupt conditions. 

Table 2-10. USBSTS USB Status Register Bit Definitions 

Bit Description 

31:16 Reserved. These bits are reserved and should be set to zero. 

15 Asynchronous Schedule Status   RO. 0=Default. The bit reports the current real 
status of the Asynchronous Schedule. If this bit is a zero then the status of the 
Asynchronous Schedule is disabled. If this bit is a one then the status of the 
Asynchronous Schedule is enabled. The Host Controller is not required to immediately 
disable or enable the Asynchronous Schedule when software transitions the 
Asynchronous Schedule Enable bit in the USBCMD register. When this bit and the 
Asynchronous Schedule Enable bit are the same value, the Asynchronous Schedule is 
either enabled (1) or disabled (0). 

14 Periodic Schedule Status   RO. 0=Default. The bit reports the current real status of 
the Periodic Schedule. If this bit is a zero then the status of the Periodic Schedule is 
disabled. If this bit is a one then the status of the Periodic Schedule is enabled. The 
Host Controller is not required to immediately disable or enable the Periodic Schedule 
when software transitions the Periodic Schedule Enable bit in the USBCMD register. 
When this bit and the Periodic Schedule Enable bit are the same value, the Periodic 
Schedule is either enabled (1) or disabled (0).  

13 Reclamation   RO. 0=Default. This is a read-only status bit, which is used to detect an 
empty asynchronous schedule. The operational model of empty schedule detection is 
described in Section 4.8.3. The valid transitions for this bit are described in Section 
4.8.6.  

12 HCHalted   RO.  1=Default. This bit is a zero whenever the Run/Stop bit is a one. The 
Host Controller sets this bit to one after it has stopped executing as a result of the 
Run/Stop bit being set to 0, either by software or by the Host Controller hardware (e.g. 
internal error). 

11:6 Reserved. These bits are reserved and should be set to zero. 
5 Interrupt on Async Advance   R/WC.  0=Default. System software can force the host 

controller to issue an interrupt the next time the host controller advances the 
asynchronous schedule by writing a one to the Interrupt on Async Advance Doorbell bit 
in the USBCMD register. This status bit indicates the assertion of that interrupt source. 

4 Host System Error   R/WC. The Host Controller sets this bit to 1 when a serious error 
occurs during a host system access involving the Host Controller module.  In a PCI 
system, conditions that set this bit to 1 include PCI Parity error, PCI Master Abort, and 
PCI Target Abort. When this error occurs, the Host Controller clears the Run/Stop bit in 
the Command register to prevent further execution of the scheduled TDs.  

3 Frame List Rollover   R/WC. The Host Controller sets this bit to a one when the 
Frame List Index (see Section 2.3.4) rolls over from its maximum value to zero. The 
exact value at which the rollover occurs depends on the frame list size. For example, if 
the frame list size (as programmed in the Frame List Size field of the USBCMD register) 
is 1024, the Frame Index Register rolls over every time FRINDEX[13] toggles. Similarly, 
if the size is 512, the Host Controller sets this bit to a one every time FRINDEX[12] 
toggles. 
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Table 2-10. USBSTS USB Status Register Bit Definitions (cont.) 

Bit Description 

2 Port Change Detect   R/WC. The Host Controller sets this bit to a one when any port 
for which the Port Owner bit is set to zero (see Section 2.3.9) has a change bit transition 
from a zero to a one or a Force Port Resume bit transition from a zero to a one as a 
result of a J-K transition detected on a suspended port. This bit will also be set as a 
result of the Connect Status Change being set to a one after system software has 
relinquished ownership of a connected port by writing a one to a port's Port Owner bit 
(see Section 4.2.2). 
This bit is allowed to be maintained in the Auxiliary power well. Alternatively, it is also 
acceptable that on a D3 to D0 transition of the EHCI HC device, this bit is loaded with 
the OR of all of the PORTSC change bits (including: Force port resume, over-current 
change, enable/disable change and connect status change). 

1 USB Error Interrupt (USBERRINT)   R/WC.  The Host Controller sets this bit to 1 
when completion of a USB transaction results in an error condition (e.g., error counter 
underflow). If the TD on which the error interrupt occurred also had its IOC bit set, both 
this bit and USBINT bit are set. See Section 4.15.1 for a list of the USB errors that will 
result in this bit being set to a one. 

0 USB Interrupt (USBINT)   R/WC.  The Host Controller sets this bit to 1 on the 
completion of a USB transaction, which results in the retirement of a Transfer Descriptor 
that had its IOC bit set.  
The Host Controller also sets this bit to 1 when a short packet is detected (actual 
number of bytes received was less than the expected number of bytes).  

 

2.3.3 USBINTR   USB Interrupt Enable Register 
Address: Operational Base + (08h) 
Default Value: 00000000h 
Attributes R/W 
Size 32 bits 

This register enables and disables reporting of the corresponding interrupt to the software. When a bit is set 
and the corresponding interrupt is active, an interrupt is generated to the host. Interrupt sources that are 
disabled in this register still appear in the USBSTS to allow the software to poll for events.  

Each interrupt enable bit description indicates whether it is dependent on the interrupt threshold mechanism 
(see Section 4.15). 

Table 2-11. USBINTR - USB Interrupt Enable Register 

Bit Interrupt Source Description 

31:6 Reserved.  These bits are reserved and should be zero. 

5 Interrupt on Async Advance Enable When this bit is a one, and the Interrupt on 
Async Advance bit in the USBSTS register 
is a one, the host controller will issue an 
interrupt at the next interrupt threshold. The 
interrupt is acknowledged by software 
clearing the Interrupt on Async Advance bit. 

4 Host System Error Enable When this bit is a one, and the Host System 
Error Status bit in the USBSTS register is a 
one, the host controller will issue an 
interrupt. The interrupt is acknowledged by 
software clearing the Host System Error bit. 
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Table 2-11. USBINTR - USB Interrupt Enable Register (cont.) 

Bit Description 

3 Frame List Rollover Enable.  When this bit is a one, and the Frame List 
Rollover bit in the USBSTS register is a 
one, the host controller will issue an 
interrupt.  The interrupt is acknowledged by 
software clearing the Frame List Rollover 
bit. 

2 Port Change Interrupt Enable. When this bit is a one, and the Port Change 
Detect bit in the USBSTS register is a one, 
the host controller will issue an interrupt. 
The interrupt is acknowledged by software 
clearing the Port Change Detect bit. 

1 USB Error Interrupt Enable.  When this bit is a one, and the USBERRINT 
bit in the USBSTS register is a one, the host 
controller will issue an interrupt at the next 
interrupt threshold. The interrupt is 
acknowledged by software clearing the 
USBERRINT bit.  

0 USB Interrupt Enable.  When this bit is a one, and the USBINT bit 
in the USBSTS register is a one, the host 
controller will issue an interrupt at the next 
interrupt threshold. The interrupt is 
acknowledged by software clearing the 
USBINT bit.  

Note: for all enable register bits, 1= Enabled, 0= Disabled 

2.3.4 FRINDEX   Frame Index Register 
Address: Operational Base + (0Ch) 
Default Value: 00000000h 
Attribute: R/W (Writes must be DWord Writes)  
Size 32 bits 
 
This register is used by the host controller to index into the periodic frame list. The register updates every 
125 microseconds (once each micro-frame). Bits [N:3] are used to select a particular entry in the Periodic 
Frame List during periodic schedule execution. The number of bits used for the index depends on the size of 
the frame list as set by system software in the Frame List Size field in the USBCMD register (see Table 2-9). 

This register must be written as a DWord. Byte writes produce undefined results. This register cannot be 
written unless the Host Controller is in the Halted state as indicated by the HCHalted bit (USBSTS register 
Section 2.3.2). A write to this register while the Run/Stop bit is set to a one (USBCMD register, Section 
2.3.1) produces undefined results. Writes to this register also affect the SOF value. See Section 4.5 for 
details. 
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Table 2-12. FRINDEX   Frame Index Register 

Bit Description 

31:14 Reserved.  
13:0 Frame Index. The value in this register increments at the end of each time frame (e.g. 

micro-frame). Bits [N:3] are used for the Frame List current index. This means that each 
location of the frame list is accessed 8 times (frames or micro-frames) before moving to 
the next index. The following illustrates values of N based on the value of the Frame List 
Size field in the USBCMD register. 

USBCMD[Frame List Size] Number Elements N 
00b (1024) 12 
01b (512) 11 
10b (256) 10 
11b Reserved 

The SOF frame number value for the bus SOF token is derived or alternatively managed from this register. 
Please refer to Section 4.5 for a detailed explanation of the SOF value management requirements on the host 
controller. The value of FRINDEX must be 125 µsec (1 micro-frame) ahead of the SOF token value. The 
SOF value may be implemented as an 11-bit shadow register. For this discussion, this shadow register is 11 
bits and is named SOFV. SOFV updates every 8 micro-frames. (1 millisecond). An example implementation 
to achieve this behavior is to increment SOFV each time the FRINDEX[2:0] increments from a zero to a 
one.  

Software must use the value of FRINDEX to derive the current micro-frame number, both for high-speed 
isochronous scheduling purposes and to provide the get micro-frame number function required for client 
drivers. Therefore, the value of FRINDEX and the value of SOFV must be kept consistent if chip is reset or 
software writes to FRINDEX. Writes to FRINDEX must also write-through FRINDEX[13:3] to 
SOFV[10:0]. In order to keep the update as simple as possible, software should never write a FRINDEX 
value where the three least significant bits are 111b or 000b. Please refer to Section 4.5. 

2.3.5 CTRLDSSEGMENT   Control Data Structure Segment Register 
Address: Operational Base + (10h) 
Default Value: 00000000h 
Attribute: R/W (Writes must be DWord Writes) 
Size: 32 bits 
 
This 32-bit register corresponds to the most significant address bits [63:32] for all EHCI data structures. If 
the 64-bit Addressing Capability field in HCCPARAMS is a zero, then this register is not used. Software 
cannot write to it and a read from this register will return zeros. 

If the 64-bit Addressing Capability field in HCCPARAMS is a one, then this register is used with the link 
pointers to construct 64-bit addresses to EHCI control data structures. This register is concatenated with the 
link pointer from either the PERIODICLISTBASE, ASYNCLISTADDR, or any control data structure link 
field to construct a 64-bit address. 

This register allows the host software to locate all control data structures within the same 4 Gigabyte 
memory segment.  

2.3.6 PERIODICLISTBASE   Periodic Frame List Base Address Register 
Address: Operational Base + (14h) 
Default Value: Undefined 
Attribute: R/W (Writes must be DWord Writes) 
Size: 32 bits 
 
This 32-bit register contains the beginning address of the Periodic Frame List in the system memory. If the 
host controller is in 64-bit mode (as indicated by a one in the 64-bit Addressing Capability field in the 
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HCCSPARAMS register), then the most significant 32 bits of every control data structure address comes 
from the CTRLDSSEGMENT register (see Section 2.3.5). System software loads this register prior to 
starting the schedule execution by the Host Controller (see 4.1). The memory structure referenced by this 
physical memory pointer is assumed to be 4-Kbyte aligned. The contents of this register are combined with 
the Frame Index Register (FRINDEX) to enable the Host Controller to step through the Periodic Frame List 
in sequence.  

Table 2-13. PERIODICLISTBASE   Periodic Frame List Base Address Register 

Bit Description 

31:12 Base Address (Low). These bits correspond to memory address signals [31:12], 
respectively. 

11:0 Reserved. Must be written as 0s. During runtime, the values of these bits are undefined. 

2.3.7 ASYNCLISTADDR   Current Asynchronous List Address Register 
Address: Operational Base + (18h) 
Default Value: Undefined 
Attribute: Read/Write (Writes must be DWord Writes) 
Size: 32 bits 
 
This 32-bit register contains the address of the next asynchronous queue head to be executed. If the host 
controller is in 64-bit mode (as indicated by a one in 64-bit Addressing Capability field in the 
HCCPARAMS register), then the most significant 32 bits of every control data structure address comes from 
the CTRLDSSEGMENT register (See Section 2.3.5). Bits [4:0] of this register cannot be modified by system 
software and will always return a zero when read. The memory structure referenced by this physical memory 
pointer is assumed to be 32-byte (cache line) aligned.  

Table 2-14. ASYNCLISTADDR   Current Asynchronous List Address Register 

Bit Description 

31:5 Link Pointer Low (LPL). These bits correspond to memory address signals [31:5], 
respectively. This field may only reference a Queue Head (QH), see Section 3.6. 

4:0 Reserved. These bits are reserved and their value has no effect on operation. 

2.3.8 CONFIGFLAG   Configure Flag Register 
Address: Operational Base+ (40h) 
Default Value: 00000000h 
Attribute R/W 
Size 32 bits 
 

This register is in the auxiliary power well.  It is only reset by hardware when the auxiliary power is initially 
applied or in response to a host controller reset. 

Table 2-15. CONFIGFLAG   Configure Flag Register Bit Definitions 

Bit Description 

31:1 Reserved. These bits are reserved and should be set to zero. 
0 Configure Flag (CF)  R/W. Default 0b. Host software sets this bit as the last action in 

its process of configuring the Host Controller (see Section 4.1). This bit controls the 
default port-routing control logic. Bit values and side-effects are listed below. See 
Section 4.2 For operational details. 

0b Port routing control logic default-routes each port to an implementation 
dependent classic host controller.  

1b Port routing control logic default-routes all ports to this host controller.  
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2.3.9 PORTSC   Port Status and Control Register 
Address: Operational Base + (44h + (4*Port Number-1)) 

where: Port Number is 1, 2, 3, … N_PORTS 
Default:  00002000h (w/PPC set to one); 00003000h (w/PPC set to a zero) 
Attribute: RO, R/W, R/WC (field dependent) 
Size 32 bits 
 
A host controller must implement one or more port registers. The number of port registers implemented by a 
particular instantiation of a host controller is documented in the HCSPARAMs register (Section 2.2.3). 
Software uses this information as an input parameter to determine how many ports need to be serviced. All 
ports have the structure defined below. 

This register is in the auxiliary power well. It is only reset by hardware when the auxiliary power is initially 
applied or in response to a host controller reset. The initial conditions of a port are:   

•  No device connected,  

•  Port disabled 

If the port has port power control, software cannot change the state of the port until after it applies power to 
the port by setting port power to a 1.  Software must not attempt to change the state of the port until after 
power is stable on the port. The host is required to have power stable to the port within 20 milliseconds of 
the zero to one transition.  

Note1: When a device is attached, the port state transitions to the connected state and system software will 
process this as with any status change notification. Refer to Section 4.3 for operational requirements for how 
change events interact with port suspend mode. 

Note2: If a port is being used as the Debug Port, then the port may report device connected and enabled 
when the Configured Flag is a zero. 

Table 2-16. PORTSC   Port Status and Control 

Bit Description 

31:23 Reserved. These bits are reserved for future use and should return a value of zero 
when read. 

22 Wake on Over-current Enable (WKOC_E)   R/W. Default = 0b. Writing this bit to a 
one enables the port to be sensitive to over-current conditions as wake-up events. See 
Section 4.3 for effects of this bit on resume event behavior. Refer to Section 4.3.1 for 
operational model. 
This field is zero if Port Power is zero. 

21 Wake on Disconnect Enable (WKDSCNNT_E)   R/W. Default = 0b. Writing this bit to 
a one enables the port to be sensitive to device disconnects as wake-up events. See 
Section 4.3 for effects of this bit on resume event behavior. Refer to Section 4.3.1 for 
operational model. 
This field is zero if Port Power is zero. 

20 Wake on Connect Enable (WKCNNT_E)   R/W. Default = 0b. Writing this bit to a one 
enables the port to be sensitive to device connects as wake-up events. See Section 4.3 
for effects of this bit on resume event behavior. Refer to Section 4.3.1 for operational 
model. 
This field is zero if Port Power is zero. 
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Table 2-16. PORTSC   Port Status and Control (cont.) 

Bit Description 

19:16 Port Test Control R/W. Default = 0000b. When this field is zero, the port is NOT 
operating in a test mode. A non-zero value indicates that it is operating in test mode and 
the specific test mode is indicated by the specific value. The encoding of the test mode 
bits are (0110b - 1111b are reserved): 

Bits Test Mode 
0000b Test mode not enabled 
0001b Test J_STATE 
0010b Test K_STATE 
0011b Test SE0_NAK 
0100b Test Packet 
0101b Test FORCE_ENABLE 

Refer to Section 4.14 for the operational model for using these test modes and the USB 
Specification Revision 2.0, Chapter 7 for details on each test mode. 

15:14 Port Indicator Control. Default = 00b. Writing to these bits has no effect if the 
P_INDICATOR bit in the HCSPARAMS register is a zero. If P_INDICATOR bit is a one, 
then the bit encodings are: 

Bit Value Meaning 
00b Port indicators are off 
01b Amber 
10b Green 
11b Undefined 

Refer to the USB Specification Revision 2.0 for a description on how these bits are to be 
used. 
This field is zero if Port Power is zero. 

13 Port Owner R/W Default = 1b. This bit unconditionally goes to a 0b when the 
Configured bit in the CONFIGFLAG register makes a 0b to 1b transition. This bit 
unconditionally goes to 1b whenever the Configured bit is zero.  
System software uses this field to release ownership of the port to a selected host 
controller (in the event that the attached device is not a high-speed device). Software 
writes a one to this bit when the attached device is not a high-speed device. A one in 
this bit means that a companion host controller owns and controls the port. See Section 
4.2 for operational details. 

12 Port Power (PP) R/W or RO. The function of this bit depends on the value of the Port 
Power Control (PPC) field in the HCSPARAMS register. The behavior is as follows: 

PPC PP Operation 
0b 1b RO Host controller does not have port power control switches. 

Each port is hard-wired to power.  
1b 1b/0b R/W Host controller has port power control switches. This bit 

represents the current setting of the switch (0 = off, 1 = on). When 
power is not available on a port (i.e. PP equals a 0), the port is non-
functional and will not report attaches, detaches, etc. 

When an over-current condition is detected on a powered port and PPC is a one, the PP 
bit in each affected port may be transitioned by the host controller from a 1 to 0 
(removing power from the port). 
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Table 2-16. PORTSC   Port Status and Control (cont.) 

Bit Description 

11:10 Line Status RO. These bits reflect the current logical levels of the D+ (bit 11) and D- 
(bit 10) signal lines. These bits are used for detection of low-speed USB devices prior to 
the port reset and enable sequence. This field is valid only when the port enable bit is 
zero and the current connect status bit is set to a one. 
The encoding of the bits are: 
 Bits[11:10] USB State Interpretation 
 00b SE0 Not Low-speed device, perform EHCI reset 
 10b J-state Not Low-speed device, perform EHCI reset 
 01b K-state Low-speed device, release ownership of port 
 11b Undefined Not Low-speed device, perform EHCI reset. 
This value of this field is undefined if Port Power is zero.  

9 Reserved. This bit is reserved for future use, and should return a value of zero when 
read. 

8 Port Reset R/W. 1=Port is in Reset. 0=Port is not in Reset. Default = 0. When 
software writes a one to this bit (from a zero), the bus reset sequence as defined in the 
USB Specification Revision 2.0 is started. Software writes a zero to this bit to terminate 
the bus reset sequence. Software must keep this bit at a one long enough to ensure the 
reset sequence, as specified in the USB Specification Revision 2.0, completes. Note: 
when software writes this bit to a one, it must also write a zero to the Port Enable bit. 
Note that when software writes a zero to this bit there may be a delay before the bit 
status changes to a zero. The bit status will not read as a zero until after the reset has 
completed. If the port is in high-speed mode after reset is complete, the host controller 
will automatically enable this port (e.g. set the Port Enable bit to a one). A host controller 
must terminate the reset and stabilize the state of the port within 2 milliseconds of 
software transitioning this bit from a one to a zero. For example: if the port detects that 
the attached device is high-speed during reset, then the host controller must have the 
port in the enabled state within 2ms of software writing this bit to a zero.  
The HCHalted bit in the USBSTS register should be a zero before software attempts to 
use this bit. The host controller may hold Port Reset asserted to a one when the 
HCHalted bit is a one. 
This field is zero if Port Power is zero. 

7 Suspend R/W. 1=Port in suspend state. 0=Port not in suspend state. Default = 0. Port 
Enabled Bit and Suspend bit of this register define the port states as follows: 
Bits [Port Enabled, Suspend] Port State 

0X Disable 
10 Enable 
11 Suspend 

When in suspend state, downstream propagation of data is blocked on this port, except 
for port reset. The blocking occurs at the end of the current transaction, if a transaction 
was in progress when this bit was written to 1. In the suspend state, the port is sensitive 
to resume detection.  Note that the bit status does not change until the port is 
suspended and that there may be a delay in suspending a port if there is a transaction 
currently in progress on the USB. 
A write of zero to this bit is ignored by the host controller. The host controller will 
unconditionally set this bit to a zero when: 

•  Software sets the Force Port Resume bit to a zero (from a one).  
•  Software sets the Port Reset bit to a one (from a zero). 

If host software sets this bit to a one when the port is not enabled (i.e. Port enabled bit is 
a zero) the results are undefined.  
This field is zero if Port Power is zero. 
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Table 2-16. PORTSC   Port Status and Control (cont.) 

Bit Description 

6 Force Port Resume   R/W. 1= Resume detected/driven on port. 0=No resume (K-
state) detected/driven on port. Default = 0. This functionality defined for manipulating 
this bit depends on the value of the Suspend bit. For example, if the port is not 
suspended (Suspend and Enabled bits are a one) and software transitions this bit to a 
one, then the effects on the bus are undefined. 
Software sets this bit to a 1 to drive resume signaling. The Host Controller sets this bit to 
a 1 if a J-to-K transition is detected while the port is in the Suspend state. When this bit 
transitions to a one because a J-to-K transition is detected, the Port Change Detect bit in 
the USBSTS register is also set to a one. If software sets this bit to a one, the host 
controller must not set the Port Change Detect bit. 
Note that when the EHCI controller owns the port, the resume sequence follows the 
defined sequence documented in the USB Specification Revision 2.0. The resume 
signaling (Full-speed 'K') is driven on the port as long as this bit remains a one. Software 
must appropriately time the Resume and set this bit to a zero when the appropriate 
amount of time has elapsed. Writing a zero (from one) causes the port to return to high-
speed mode (forcing the bus below the port into a high-speed idle). This bit will remain a 
one until the port has switched to the high-speed idle. The host controller must complete 
this transition within 2 milliseconds of software setting this bit to a zero. 
This field is zero if Port Power is zero. 

5 Over-current Change R/WC. Default = 0. 1=This bit gets set to a one when there is a 
change to Over-current Active. Software clears this bit by writing a one to this bit 
position.  

4 Over-current Active RO. Default = 0. 1=This port currently has an over-current 
condition. 0=This port does not have an over-current condition. This bit will automatically 
transition from a one to a zero when the over current condition is removed. 

3 Port Enable/Disable Change R/WC. 1=Port enabled/disabled status has changed. 
0=No change. Default = 0. For the root hub, this bit gets set to a one only when a port is 
disabled due to the appropriate conditions existing at the EOF2 point (See Chapter 11 of 
the USB Specification for the definition of a Port Error). Software clears this bit by writing 
a 1 to it. 
This field is zero if Port Power is zero. 

2 Port Enabled/Disabled R/W.  1=Enable. 0=Disable. Default = 0. Ports can only be 
enabled by the host controller as a part of the reset and enable. Software cannot enable 
a port by writing a one to this field. The host controller will only set this bit to a one when 
the reset sequence determines that the attached device is a high-speed device. 
Ports can be disabled by either a fault condition (disconnect event or other fault 
condition) or by host software. Note that the bit status does not change until the port 
state actually changes. There may be a delay in disabling or enabling a port due to other 
host controller and bus events. See Section 4.2 for full details on port reset and enable.  
When the port is disabled (0b) downstream propagation of data is blocked on this port, 
except for reset. 
This field is zero if Port Power is zero. 

1 Connect Status Change R/WC.  1=Change in Current Connect Status. 0=No change. 
Default = 0. Indicates a change has occurred in the port’s Current Connect Status. The 
host controller sets this bit for all changes to the port device connect status, even if 
system software has not cleared an existing connect status change. For example, the 
insertion status changes twice before system software has cleared the changed 
condition, hub hardware will be “setting” an already-set bit (i.e., the bit will remain set). 
Software sets this bit to 0 by writing a 1 to it. 
This field is zero if Port Power is zero. 
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Table 2-16. PORTSC   Port Status and Control (cont.) 

Bit Description 

0 Current Connect Status RO.  1=Device is present on port. 0=No device is present. 
Default = 0. This value reflects the current state of the port, and may not correspond 
directly to the event that caused the Connect Status Change bit (Bit 1) to be set. 
This field is zero if Port Power is zero. 
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3. Data Structures 
This section defines the interface data structures used to communicate control, status and data between HCD 
(software) and the Enhanced Host Controller (hardware). The data structure definitions in this chapter 
support a 32-bit memory buffer address space. Appendix B illustrates 64-bit versions of the interface data 
structures. The interface consists of a Periodic Schedule, Periodic Frame List, Asynchronous Schedule, 
Isochronous Transaction Descriptors, Split-transaction Isochronous Transfer Descriptors, Queue Heads and 
Queue Element Transfer Descriptors. 

The periodic frame list is the root of all periodic (isochronous and interrupt transfer type) support for the 
host controller interface. The asynchronous list is the root for all the bulk and control transfer type support. 
Isochronous data streams are managed using Isochronous Transaction Descriptors (iTDs are described in 
Section 3.3). Isochronous split-transaction data streams are managed with Split-transaction Isochronous 
Transfer Descriptors (siTDs are described in Section 3.4).  All Interrupt, Control and Bulk data streams are 
managed via queue heads (Section 3.6) and Queue Element Transfer Descriptors (qTDs described in Section 
3.5).1 These data structures are optimized to reduce the total memory footprint of the schedule and to reduce 
(on average) the number of memory accesses needed to execute a USB transaction. 

Note that software must ensure that no interface data structure reachable by the EHCI host controller spans a 
4K page boundary. 

The data structures defined in this chapter are (from the host controller’s perspective) a mix of read-only and 
read/writeable fields. The host controller must preserve the read-only fields on all data structure writes.  

3.1 Periodic Frame List 
This schedule is for all periodic transfers (isochronous and interrupt). The periodic schedule is referenced 
from the operational registers space using the PERIODICLISTBASE address register and the FRINDEX 
register. The periodic schedule is based on an array of pointers called the Periodic Frame List. The 
PERIODICLISTBASE address register is combined with the FRINDEX register to produce a memory pointer 
into the frame list. The Periodic Frame List implements a sliding window of work over time. 
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Figure 3-1. Periodic Schedule Organization 

                                                           
1 Split transaction Interrupt, Bulk and Control are also managed using queue heads and queue element transfer 
descriptors. 



EHCI Revision 1.0 3/12/2002 

32   USB 2.0 

The periodic frame list is a 4K-page aligned array of Frame List Link pointers. The length of the frame list 
may be programmable. The programmability of the periodic frame list is exported to system software via the 
HCCPARAMS register. If non-programmable, the length is 1024 elements. If programmable, the length can 
be selected by system software as one of 256, 512, or 1024 elements. An implementation must support all 
three sizes. Programming the size (i.e. the number of elements) is accomplished by system software writing 
the appropriate value into Frame List Size field in the USBCMD register.  

Frame List Link pointers direct the host controller to the first work item in the frame’s periodic schedule for 
the current micro-frame. The link pointers are aligned on DWORD boundaries within the Frame List. 

Frame List Link Pointer 0 Typ T 03-00H
012345678910111213141516171819202122232425262728293031

 
Figure 3-2. Format of Frame List Element Pointer  

Frame List Link pointers always reference memory objects that are 32-byte aligned. The referenced object 
may be an isochronous transfer descriptor for high-speed devices, a split-transaction isochronous transfer 
descriptor (for full-speed isochronous endpoints), or a queue head (used to support high-, full- and low-
speed interrupt). System software should not place non-periodic schedule items into the periodic schedule. 
The least significant bits in a frame list pointer are used to key the host controller as to the type of object the 
pointer is referencing.  

The least significant bit is the T-Bit (bit 0). When this bit is set to a one, the host controller will never use the 
value of the frame list pointer as a physical memory pointer. The Typ field is used to indicate the exact type 
of data structure being referenced by this pointer. The value encodings are: 

Table 3-1. Typ Field Value Definitions 

Value Meaning 

00b Isochronous Transfer Descriptor (iTD, see Section 3.3) 

01b Queue Head (QH, see Section 3.6) 

10b Split Transaction Isochronous Transfer Descriptor (siTD, see Section 3.4). 

11b Frame Span Traversal Node (FSTN, see Section 3.7) 

Refer to Section 4.4 for host controller operational details with the frame list. 

3.2 Asynchronous List Queue Head Pointer 
The Asynchronous Transfer List (based at the ASYNCLISTADDR register), is where all the control and 
bulk transfers are managed. Host controllers use this list only when it reaches the end of the periodic list, the 
periodic list is disabled, or the periodic list is empty. 

Operational
Registers

AsyncListAddr

H

Bulk/Control Queue Heads

 
Figure 3-3. Asynchronous Schedule Organization 

The Asynchronous list is a simple circular list of queue heads. The ASYNCLISTADDR register is simply a 
pointer to the next queue head. This implements a pure round-robin service for all queue heads linked into 
the asynchronous list. 
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3.3 Isochronous (High-Speed) Transfer Descriptor (iTD) 
The format of an isochronous transfer descriptor is illustrated in Figure 3-4. This structure is used only for 
high-speed isochronous endpoints. All other transfer types should use queue structures. Isochronous TDs 
must be aligned on a 32-byte boundary.  

Host Controller Read/Write Host Controller Read Only

Next Link Pointer 0 Typ T 03-00H

07-04H

012345678910111213141516171819202122232425262728293031

0B-08H

0F-0CH

13-10H

1B-18H

1F-1CH

17-14H

Buffer Pointer (Page 0) Device AddressEndPt R

Buffer Pointer (Page 1)

Buffer Pointer (Page 2)

Maximum Packet Size

Transaction 0 LengthStatus Transaction 0 Offset*

Transaction 1 LengthStatus Transaction 1 Offset*

Transaction 2 LengthStatus Transaction 2 Offset*

Transaction 3 LengthStatus Transaction 3 Offset*

23-20H

2B-28H

2F-2CH

27-24H

Transaction 4 LengthStatus Transaction 4 Offset*

Transaction 5 LengthStatus Transaction 5 Offset*

Transaction 6 LengthStatus Transaction 6 Offset*

Transaction 7 LengthStatus Transaction 7 Offset*

PG*

PG*

PG*

PG*

PG*

PG*

PG*

PG*

ioc

ioc

ioc

ioc

ioc

ioc

ioc

ioc

Buffer Pointer (Page 3)

Reserved

33-30H

Buffer Pointer (Page 4) Reserved 37-34H

Buffer Pointer (Page 5) Reserved 3B-38H

Buffer Pointer (Page 6) Reserved 3F-3CH

Mult

I/O

Reserved

*Note:these fields may be modified
by the host controller if the I/O
field indicates an OUT.  

Figure 3-4. Isochronous Transaction Descriptor (iTD) 

3.3.1 Next Link Pointer  
The first DWord of an iTD is a pointer to the next schedule data structure. 

Table 3-2. Next Schedule Element Pointer 

Bit Description 

31:5 Link Pointer (LP). These bits correspond to memory address signals [31:5], 
respectively. This field points to another Isochronous Transaction Descriptor 
(iTD/siTD), Queue Head (QH) or FSTN. 

4:3 Reserved. These bits are reserved and their value have no effect on operation. 
Software should initialize this field to zero. 
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Table 3-2. Next Schedule Element Pointer (cont.) 

Bit Description 

2:1 QH/(s)iTD/FSTN Select (Typ). This field indicates to the Host Controller whether the 
item referenced is a iTD, siTD or a QH. This allows the Host Controller to perform the 
proper type of processing on the item after it is fetched. Value encodings are: 

Value Meaning 
00b iTD (isochronous transfer descriptor) 
01b QH (queue head) 
10b siTD (split transaction isochronous transfer descriptor) 
11b FSTN (Frame Span Traversal Node) 

0 Terminate (T). 1= Link Pointer field is not valid. 0= Link Pointer field is valid.  
Refer to Section 4.7 for the host controller operational model for iTDs. 

3.3.2 iTD Transaction Status and Control List 
Dwords 1 through 8 are eight slots of transaction control and status. Each slot has the format illustrated in 
Figure 3-4. Each transaction description includes: 

•  Status results field 

•  Transaction length (bytes to send for OUT transactions and bytes received for IN transactions).  

•  Buffer offset. The PG and Transaction X Offset fields are used with the buffer pointer list to 
construct the starting buffer address for the transaction. 

The host controller uses the information in each transaction description plus the endpoint information 
contained in the first three dwords of the Buffer Page Pointer list, to execute a transaction on the USB.  

Table 3-3. iTD Transaction Status and Control  

Bit Description 

31:28 Status. This field records the status of the transaction executed by the host controller 
for this slot. This field is a bit vector with the following encoding: 

Bit Definition 
31 Active. Set to 1 by software to enable the execution of an isochronous 

transaction by the Host Controller. When the transaction associated with 
this descriptor is completed, the Host Controller sets this bit to 0 
indicating that a transaction for this element should not be executed 
when it is next encountered in the schedule.  

30 Data Buffer Error. Set to a 1 by the Host Controller during status 
update to indicate that the Host Controller is unable to keep up with the 
reception of incoming data (overrun) or is unable to supply data fast 
enough during transmission (underrun). Section 4.15.1.1.2 defines the 
requirements of the host controller when an underrun error occurs. If an 
overrun condition occurs, no action is necessary. 

29  Babble Detected. Set to a 1 by the Host Controller during status update 
when a “babble” is detected during the transaction generated by this 
descriptor.  

28 Transaction Error (XactErr). Set to a one by the Host Controller during 
status update in the case where the host did not receive a valid 
response from the device (Timeout, CRC, Bad PID, etc.). This bit may 
only be set for isochronous IN transactions.  
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Table 3-3. iTD Transaction Status and Control (cont.) 

Bit Description 

27:16 Transaction X Length. For an OUT, this field is the number of data bytes the host 
controller will send during the transaction. The host controller is not required to update 
this field to reflect the actual number of bytes transferred during the transfer.  
For an IN, the initial value of the field is the number of bytes the host expects the 
endpoint to deliver. During the status update, the host controller writes back the 
number of bytes successfully received. 
The value in this register is the actual byte count (e.g. 0 → zero length data, 1 → one 
byte, 2 → two bytes, etc.). 
The maximum value this field may contain is 0xC00 (3072). Refer to Section 4.7 for a 
description of the operational requirements for packet sizes larger than 0x400 (1024). 

15 Interrupt On Complete (IOC). If this bit is set to a one, it specifies that when this 
transaction completes, the Host Controller should issue an interrupt at the next 
interrupt threshold. 

14:12 Page Select (PG). These bits are set by software to indicate which of the buffer page 
pointers the offset field in this slot should be concatenated to produce the starting 
memory address for this transaction. The valid range of values for this field is 0 to 6.  

11:0 Transaction X Offset. This field is a value that is an offset, expressed in bytes, from 
the beginning of a buffer. This field is concatenated onto the buffer page pointer 
indicated in the adjacent PG field to produce the starting buffer address for this 
transaction. 

 

3.3.3 iTD Buffer Page Pointer List (Plus)  
Dwords 9-15 of an isochronous transaction descriptor are nominally, page pointers (4K aligned) to the data 
buffer for this transfer descriptor. This data structure requires the associated data buffer to be contiguous 
(relative to virtual memory), but allows the physical memory pages to be non-contiguous. Seven page 
pointers are provided to support the expression of 8 isochronous transfers. The seven pointers allow for 3 
(transactions) * 1024 (maximum packet size) * 8 (transaction records)  (24576 bytes) to be moved with this 
data structure, regardless of the alignment offset of the first page.  

Since each pointer is a 4K aligned page pointer, the least significant 12 bits in several of the page pointers 
are used for other purposes, as defined in Table 3-4 and Table 3-5. 

Table 3-4. iTD Buffer Pointer Page 0 (Plus) 

Bit Description 

31:12 Buffer Pointer (Page 0). This is a 4K aligned pointer to physical memory. 
Corresponds to memory address bits [31:12]. 

11:8 Endpoint Number (Endpt). This 4-bit field selects the particular endpoint number on 
the device serving as the data source or sink.  

7 Reserved. This bit is reserved for future use and should be initialized by software to 
zero. 

6:0 Device Address. This field selects the specific device serving as the data source or 
sink. 
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Table 3-5. iTD Buffer Pointer Page 1 (Plus)  

Bit Description 

31:12 Buffer Pointer (Page 1). This is a 4K aligned pointer to physical memory. 
Corresponds to memory address bits [31:12]. 

11 Direction (I/O). 0 = OUT; 1 = IN. This field encodes whether the high-speed 
transaction should use an IN or OUT PID. 

10:0 Maximum Packet Size. This directly corresponds to the maximum packet size of the 
associated endpoint (wMaxPacketSize). This field is used for high-bandwidth 
endpoints where more than one transaction is issued per transaction description (.e.g. 
per micro-frame). This field is used with the Multi field to support high-bandwidth 
pipes. This field is also used for all IN transfers to detect packet babble. See Section 
4.7.1 for operational model. 
Software should not set a value larger than 1024 (400h). Any value larger yields 
undefined results. 

 

Table 3-6. iTD Buffer Pointer Page 2 (Plus) 

Bit Description 

31:12 Buffer Pointer. This is a 4K aligned pointer to physical memory. Corresponds to 
memory address bits [31:12]. 

11:2 Reserved. This bit is reserved for future use and should be set to zero. 

1:0 Multi. This field is used to indicate to the host controller the number of transactions 
that should be executed per transaction description (e.g. per micro-frame). The valid 
values are: 

Value Meaning 
00b Reserved. A zero in this field yields undefined results. 
01b One transaction to be issued for this endpoint per micro-frame 
10b Two transactions to be issued for this endpoint per micro-frame 
11b Three transactions to be issued for this endpoint per micro-frame 

 

Table 3-7. iTD Buffer Pointer Page 3-6  

Bit Description 

31:12 Buffer Pointer. This is a 4K aligned pointer to physical memory. Corresponds to 
memory address bits [31:12]. 

11:0 Reserved. These bits are reserved for future use and should be set to zero. 
 

3.4 Split Transaction Isochronous Transfer Descriptor (siTD) 
All Full-speed isochronous transfers through Transaction Translators are managed using the siTD data 
structure. This data structure satisfies the operational requirements for managing the split transaction 
protocol. See Section 4.12.3 for operational behavior for siTDs.  
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Figure 3-5. Split-transaction Isochronous Transaction Descriptor (siTD) 

3.4.1 Next Link Pointer 
DWord 0 of an siTD is a pointer to the next schedule data structure. 

Table 3-8. Next Link Pointer 

Bit Description 

31:5 Next Link Pointer (LP). This field contains the address of the next data object to be 
processed in the periodic list and corresponds to memory address signals [31:5], 
respectively.  

4:3 Reserved. These bits must be written as 0s. 
2:1 QH/(s)iTD/FSTN Select (Typ). This field indicates to the Host Controller whether the item 

referenced is a iTD/siTD or a QH. This allows the Host Controller to perform the proper 
type of processing on the item after it is fetched. Value encodings are: 

Value Meaning 
00b iTD (isochronous transfer descriptor) 
01b QH (queue head) 
10b siTD (split transaction isochronous transfer descriptor) 
11b FSTN (Frame Span Traversal Node) 

0 Terminate (T). 1=Link Pointer field is not valid. 0=Link Pointer is valid.  
 

3.4.2 siTD Endpoint Capabilities/Characteristics 
Dwords 1 and 2 specify static information about the full-speed endpoint, the addressing of the parent 
transaction translator and micro-frame scheduling control. 

Table 3-9. Endpoint and Transaction Translator Characteristics 

Bit Description 

31 Direction (I/O). 0 = OUT; 1 = IN. This field encodes whether the full-speed transaction 
should be an IN or OUT.  

30:24 Port Number. This field is the port number of the recipient transaction translator.  
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Table 3-9. Endpoint and Transaction Translator Characteristics (cont.) 

Bit Description 

23 Reserved. This bit is reserved and should be set to zero. 
22:16 Hub Address. This field holds the device address of the transaction translators’ hub. 
15:12 Reserved. This field is reserved and should be set to zero.  
11:8 Endpoint Number (Endpt). This 4-bit field selects the particular endpoint number on the 

device serving as the data source or sink.  
7 Reserved. This bit is reserved for future use. It should be set to zero.  
6:0 Device Address. This field selects the specific device serving as the data source or sink. 

 

Table 3-10. Micro-frame Schedule Control 

Bit Description 

31:16 Reserved. This field is reserved for future use. It should be set to zero. 
15:8 Split Completion Mask (µµµµFrame C-Mask). This field (along with the Active and SplitX-

state fields in the Status byte) are used to determine during which micro-frames the host 
controller should execute complete-split transactions. When the criteria for using this field 
are met, an all zeros value in this field has undefined behavior. 
The host controller uses the value of the three low-order bits of the FRINDEX register to 
index into this bit field. If the FRINDEX register value indexes to a position where the 
µFrame C-Mask field is a one, then this siTD is a candidate for transaction execution.  
There may be more than one bit in this mask set.  

7:0 Split Start Mask (µµµµFrame S-mask). This field (along with the Active and SplitX-state fields 
in the Status byte) are used to determine during which micro-frames the host controller 
should execute start-split transactions.  
The host controller uses the value of the three low-order bits of the FRINDEX register to 
index into this bit field. If the FRINDEX register value indexes to a position where the 
µFrame S-mask field is a one, then this siTD is a candidate for transaction execution. See 
Section 4.12.3.3.1 For a comprehensive list of criteria that must be met before host 
controller will execute a transaction. 
An all zeros value in this field, in combination with existing in the periodic frame list has 
undefined results.  

 

3.4.3 siTD Transfer State 
Dwords 3-6 are used to manage the state of the transfer.  

Table 3-11. siTD Transfer Status and Control 

Bit Description 

31 Interrupt On Complete (ioc). 0 = Do not interrupt when transaction is complete. 1 = Do 
interrupt when transaction is complete. When the host controller determines that the split 
transaction has completed it will assert a hardware interrupt at the next interrupt threshold.  

30 Page Select (P). Used to indicate which data page pointer should be concatenated with 
the CurrentOffset field to construct a data buffer pointer (0 selects Page 0 pointer and 1 
selects Page 1). The host controller is not required to write this field back when the siTD is 
retired (Active bit transitioned from a one to a zero). 

29:26 Reserved. This field is reserved for future use and should be set to zero. 

25:16 Total Bytes To Transfer. This field is initialized by software to the total number of bytes 
expected in this transfer. Maximum value is 1023 (3FFh) 
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Table 3-11. siTD Transfer Status and Control (cont.) 

Bit Description 

15:8 µµµµFrame Complete-split Progress Mask (C-prog-Mask). This field is used by the host 
controller to record which split-completes have been executed. See Section 4.12.3.3.2 for 
behavioral requirements.  

7:0 Status. This field records the status of the transaction executed by the host controller for 
this slot. This field is a bit vector with the following encoding: 

Bit Definition 
7 Active. Set to 1 by software to enable the execution of an isochronous split 

transaction by the Host Controller. Refer to Section 4.12.3.3. 
6 ERR. Set to a 1 by the Host Controller when an ERR response is received 

from the transaction translator.  
5 Data Buffer Error. Set to a 1 by the Host Controller during status update to 

indicate that the Host Controller is unable to keep up with the reception of 
incoming data (overrun) or is unable to supply data fast enough during 
transmission (underrun). In the case of an underrun, the Host Controller will 
transmit an incorrect CRC (thus invalidating the data at the endpoint). If an 
overrun condition occurs, no action is necessary. 

4  Babble Detected. Set to a 1 by the Host Controller during status update 
when a “babble” is detected during the transaction generated by this 
descriptor.  

3 Transaction Error (XactErr). Set to a 1 by the Host Controller during status 
update in the case where the host did not receive a valid response from the 
device (Timeout, CRC, Bad PID, etc.). This bit will only be set for IN 
transactions.  

2 Missed Micro-Frame. The host controller detected that a host-induced hold-
off caused the host controller to miss a required complete-split transaction.  

1 Split Transaction State (SplitXstate). See Section 4.12.3.3 for operational 
details. The bit encodings are: 
Value Meaning 

0b Do Start Split. This value directs the host controller to issue a 
Start split transaction to the endpoint when a match is 
encountered in the S-mask. 

1b Do Complete Split. This value directs the host controller to issue 
a Complete split transaction to the endpoint when a match is 
encountered in the C-mask. 

0 Reserved. This bit is reserved for future use and should be set to zero. 
 

3.4.4 siTD Buffer Pointer List (plus) 
Dwords 4 and 5 are the data buffer page pointers for the transfer. This structure supports one physical page 
cross. The most significant 20 bits of each Dword in this section are the 4K (page) aligned buffer pointers. 
The least significant 12 bits of each Dword are used as additional transfer state. 

Table 3-12. Buffer Page Pointer List (plus) 

Bit Description 

31:12 Buffer Pointer List. Bits [31:12] of Dwords 4 and 5 are 4K paged aligned, physical 
memory addresses. These bits correspond to physical address bits [31:12] 
respectively.  
The lower 12 bits in each pointer are defined and used as specified below. The field P 
(see Table 3-11) specifies the current active pointer.  
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Table 3-12. Buffer Page Pointer List (plus) (cont.) 

Bit Description 

11:0 Page 0: 
Current Offset. The 12 least significant bits of the Page 0 pointer is the current byte 
offset for the current page pointer (as selected with the page indicator bit (P field)). 
The host controller is not required to write this field back when the siTD is retired 
(Active bit transitioned from a one to a zero). 
The least significant bits of Page 1 pointer is split into three sub-fields: 
Page 1: 
Bits Description 
11:5 Reserved. 
4:3 Transaction position (TP). This field is used with T-count to determine 

whether to send all, first, middle, or last with each outbound transaction 
payload. System software must initialize this field with the appropriate starting 
value. The host controller must correctly manage this state during the lifetime 
of the transfer. The bit encodings are: 
Value Meaning 
00b All. The entire full-speed transaction data payload is in this 

transaction (i.e. less than or equal to 188 bytes). 
01b Begin. This is the first data payload for a full-speed transaction 

that is greater than 188 bytes. 
10b Mid. This the middle payload for a full-speed OUT transaction 

that is larger than 188 bytes. 
11b End. This is the last payload for a full-speed OUT transaction that 

was larger than 188 bytes. 
2:0 Transaction count (T-Count). Software initializes this field with the number 

of OUT start-splits this transfer requires. Any value larger than 6 is undefined.  
 

3.4.5 siTD Back Link Pointer 
Dword 6 of an siTD is simply another schedule link pointer. This pointer is always zero, or references an 
siTD. This pointer cannot reference any other schedule data structure. See Section 4.12.3.3.2.1 for details on 
the operational model. 

Table 3-13. siTD Back Link Pointer 

Bit Description 

31:5 siTD Back Pointer. This field is a physical memory pointer to an siTD. See Section 
4.12.3.3.2.1 for operational details. 

4:1 Reserved. This field is reserved for future use. It should be set to zero. 

0 Terminate (T). 1 = siTD Back Pointer field is not valid. 0 = siTD Back Pointer field is 
valid. Refer to Section 4.12.3.3.2.1 for use. 

 

3.5 Queue Element Transfer Descriptor (qTD) 
This data structure is only used with a queue head (see Section 3.6). This data structure is used for one or 
more USB transactions. See Section 4.10 for a complete description of the behavioral model. This data 
structure is used to transfer up to 20480 (5*4096) bytes. The structure contains two structure pointers used 
for queue advancement, a Dword of transfer state and a five-element array of data buffer pointers. This 
structure is 32 bytes (or one 32-byte cache line). This data structure must be physically contiguous. 
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The buffer associated with this transfer must be virtually contiguous. The buffer may start on any byte 
boundary. A separate buffer pointer list element must be used for each physical page in the buffer, regardless 
of whether the buffer is physically contiguous. 

Host controller updates (host controller writes) to stand-alone qTDs only occur during transfer retirement 
(see Section 4.10.4). References in the following bit field definitions of updates to the 'qTD' are to the qTD 
portion of a queue head (see Figure 3-7). 

012345678910111213141516171819202122232425262728293031

03-00H

07-04H

Next qTD Pointer T

0B-08H

0

Host Controller Read/Write Host Controller Read Only

0F-0CH

Alternate Next qTD Pointer T0

13-10H

17-14H

1B-18H

1F-1CH
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Code

dt Total Bytes to Transfer CerrC_Pageioc

Buffer Pointer (page 0) Current Offset

Buffer Pointer (page 1) Reserved

Buffer Pointer (page 2) Reserved

Buffer Pointer (page 3) Reserved

Buffer Pointer (page 4) Reserved

Transfer Results
 

Figure 3-6. Queue Element Transfer Descriptor Block Diagram 

Queue Element Transfer Descriptors must be aligned on 32-byte boundaries. 

3.5.1 Next qTD Pointer  
The first DWord of an element transfer descriptor is a pointer to another transfer element descriptor.  

Table 3-14. qTD Next Element Transfer Pointer (DWord 0) 

Bit Description 

31:5 Next Transfer Element Pointer. This field contains the physical memory address of 
the next qTD to be processed. The field corresponds to memory address signals 
[31:5], respectively. 

4:1 Reserved. These bits are reserved and their value has no effect on operation. 

0 Terminate (T). 1= pointer is invalid. 0=Pointer is valid (points to a valid Transfer 
Element Descriptor). This bit indicates to the Host Controller that there are no more 
valid entries in the queue. 

 

3.5.2 Alternate Next qTD Pointer  
The second DWord of a queue element transfer descriptor is used to support hardware-only advance of the 
data stream to the next client buffer on short packet. To be more explicit the host controller will always use 
this pointer when the current qTD is retired due to short packet.  
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Table 3-15. qTD Alternate Next Element Transfer Pointer (DWord 1) 

Bit Description 

31:5 Alternate Next Transfer Element Pointer. This field contains the physical memory 
address of the next qTD to be processed in the event that the current qTD execution 
encounters a short packet (for an IN transaction). The field corresponds to memory 
address signals [31:5], respectively. 

4:1 Reserved. These bits are reserved and their value has no effect on operation. 

0 Terminate (T). 1= pointer is invalid. 0=Pointer is valid (points to a valid Transfer 
Element Descriptor). This bit indicates to the Host Controller that there are no more 
valid entries in the queue. 

 

3.5.3 qTD Token  
The third DWORD of a queue element transfer descriptor contains most of the information the host 
controller requires to execute a USB transaction (the remaining endpoint-addressing information is specified 
in the queue head). 

Note: the field descriptions forward reference fields defined in the queue head (Section 3.6). Where 
necessary, these forward references are preceded with a QH. notation. 

Table 3-16. qTD Token (DWord 2) 

Bit Description 

31 Data Toggle. This is the data toggle sequence bit. The use of this bit depends on the 
setting of the Data Toggle Control bit in the queue head. See Section 4.10 for the 
operational model of data toggle.  

30:16 Total Bytes to Transfer. This field specifies the total number of bytes to be moved 
with this transfer descriptor. This field is decremented by the number of bytes actually 
moved during the transaction, only on the successful completion of the transaction.  
The maximum value software may store in this field is 5 * 4K (5000H). This is the 
maximum number of bytes 5 page pointers can access. 
Please refer to Section 4.10.3 for a complete description of the host controller 
requirements when this field decrements to zero. 
If the value of this field is zero when the host controller fetches this transfer descriptor 
(and the active bit is set), the host controller executes a zero-length transaction and 
retires the transfer descriptor. 
It is not a requirement for OUT transfers that Total Bytes To Transfer be an even 
multiple of QHD.Maximum Packet Length. If software builds such a transfer descriptor 
for an OUT transfer, the last transaction will always be less than QHD.Maximum 
Packet Length.  

15 Interrupt On Complete (IOC). If this bit is set to a one, it specifies that when this qTD 
is completed, the Host Controller should issue an interrupt at the next interrupt 
threshold. 

14:12 Current Page (C_Page). This field is used as an index into the qTD buffer pointer list 
(Section 4.10.6). Valid values are in the range 0H to 4H. The host controller is not 
required to write this field back when the qTD is retired (see Section 4.10.4). 
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Table 3-16. qTD Token (DWord 2) (cont.) 

Bit Description 

11:10 Error Counter (CERR). This field is a 2-bit down counter that keeps track of the 
number of consecutive Errors detected while executing this qTD. If this field is 
programmed with a non zero value during setup, the Host Controller decrements the 
count and writes it back to the qTD if the transaction fails. If the counter counts from 
one to zero, the Host Controller marks the qTD inactive, sets the Halted bit to a one 
and error status bit for the error that caused CERR to decrement to zero. An interrupt 
will be generated if the USB Error Interrupt Enable bit in the USBINTR register is set 
to a one. If HCD programs this field to zero during setup, the Host Controller will not 
count errors for this qTD and there will be no limit on the retries of this qTD. Note that 
write-backs of intermediate execution state are to the queue head overlay area, not 
the qTD. 
Error Decrement Counter Error Decrement Counter 
Transaction Error Yes Data Buffer Error No3 
Stalled No1 Babble Detected No1 
No Error No2  
  

1  Detection of Babble or Stall automatically halts the queue head. Thus, count is 
not decremented. 

2  If the EPS field indicates a HS device or the queue head is in the Asynchronous 
Schedule (and PIDCode indicates an IN or OUT) and a bus transaction 
completes and the host controller does not detect a transaction error, then the 
host controller should reset CERR to extend the total number of errors for this 
transaction. For example, CERR should be reset with maximum value (3) on 
each successful completion of a transaction. The host controller must never 
reset this field if the value at the start of the transaction is 00b. 
See Sections 4.12.2.4.1and 4.12.2.4.2 for CERR adjustment rules when the 
EPS field indicates a FS or LS device and the queue head is in the Periodic 
Schedule.  See Section 4.12.1.2 for CERR adjustment rules when the EPS field 
indicates a FS or LS device, the queue head is in the Asynchronous schedule 
and the PIDCode indicates a SETUP. 

3 Data buffer errors are host problems. They don't count against the device's 
retries. 

Note: Software must not program CErr to a value of zero when the EPS field is 
programmed with a value indicating a Full- or Low-speed device. This combination 
could result in undefined behavior. 

9:8 PID Code. This field is an encoding of the token which should be used for transactions 
associated with this transfer descriptor. Encodings are: 

 00b OUT Token generates token (E1H)  
 01b IN Token generates token (69H) 
 10b SETUP Token   generates token (2DH) (undefined if endpoint is an 
     Interrupt transfer type, e.g. µFrame S-mask field in 
    the queue head is non-zero.) 
 11b Reserved 

7:0 Status. This field is used by the Host Controller to communicate individual command 
execution states back to HCD. This field contains the status of the last transaction 
performed on this qTD. The bit encodings are: 
Bit Status Field Description 
7 Active.  Set to 1 by software to enable the execution of transactions by the 

Host Controller. Refer to Section 4.10.3 for operational details about when the 
host controller transitions this bit from a one to a zero. 
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Table 3-16. qTD Token (DWord 2) (cont.) 

Bit Description 

7:0 
(cont.) 

Bit Status Field Description 
6 Halted. Set to a 1 by the Host Controller during status updates to indicate that 

a serious error has occurred at the device/endpoint addressed by this qTD. 
This can be caused by babble, the error counter counting down to zero, or 
reception of the STALL handshake from the device during a transaction. Any 
time that a transaction results in the Halted bit being set to a one, the Active bit 
is also set to 0.  

5 Data Buffer Error.  Set to a 1 by the Host Controller during status update to 
indicate that the Host Controller is unable to keep up with the reception of 
incoming data (overrun) or is unable to supply data fast enough during 
transmission (underrun). Section 4.15.1.1.2 defines the requirements of the 
host controller when an underrun error occurs.  If a overrun condition occurs, 
the Host Controller will force a timeout condition on the USB, invalidating the 
transaction at the source. If the host controller sets this bit to a one, then it 
remains a one for the duration of the transfer.  

4 Babble Detected. Set to a 1 by the Host Controller during status update when 
a “babble” is detected during the transaction. In addition to setting this bit, the 
Host Controller also sets the Halted bit to a 1. Since “babble” is considered a 
fatal error for the transfer, setting the Halted bit to a 1 insures that no more 
transactions occur as a result of this descriptor.  

3 Transaction Error (XactErr).  Set to a one by the Host Controller during status 
update in the case where the host did not receive a valid response from the 
device (Timeout, CRC, Bad PID, etc.). Refer to Section 4.15.1.1 for summary of 
the conditions that affect this bit. If the host controller sets this bit to a one, then 
it remains a one for the duration of the transfer. 

2 Missed Micro-Frame. This bit is ignored unless the QH.EPS field indicates a 
full- or low-speed endpoint and the queue head is in the periodic list. This bit is 
set when the host controller detected that a host-induced hold-off caused the 
host controller to miss a required complete-split transaction. If the host 
controller sets this bit to a one, then it remains a one for the duration of the 
transfer. 

1 Split Transaction State (SplitXstate). This bit is ignored by the host controller 
unless the QH.EPS field indicates a full- or low-speed endpoint. When a Full- or 
Low-speed device, the host controller uses this bit to track the state of the split-
transaction. The functional requirements of the host controller for managing this 
state bit and the split transaction protocol depends on whether the endpoint is 
in the periodic or asynchronous schedule. See Section 4.12 for operational 
details. The bit encodings are: 

Value Meaning 
0b Do Start Split. This value directs the host controller to issue a 

Start split transaction to the endpoint.  
1b Do Complete Split. This value directs the host controller to issue 

a Complete split transaction to the endpoint.  
0 Ping State (P)/ERR. If the QH.EPS field indicates a High-speed device and the 

PID_Code indicates an OUT endpoint, then this is the state bit for the Ping 
protocol. See Section 4.11 for operational details. The bit encodings are: 

Value Meaning 
0b Do OUT. This value directs the host controller to issue an OUT 

PID to the endpoint.  
1b Do Ping. This value directs the host controller to issue a PING 

PID to the endpoint. 
If the QH.EPS field does not indicate a High-speed device, then this field is 
used as an error indicator bit. It is set to a one by the host controller whenever 
a periodic split-transaction receives an ERR handshake. 
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3.5.4 qTD Buffer Page Pointer List  
The last five DWords of a queue element transfer descriptor is an array of physical memory address 
pointers. These pointers reference the individual pages of a data buffer. Refer to Section 4.10.6 for 
operational requirements. 

System software initializes Current Offset field to the starting offset into the current page, where current 
page is selected via the value in the C_Page field.  

Table 3-17. qTD Buffer Pointer(s) (DWords 3-7) 

Bit Description 

31:12 Buffer Pointer List. Each element in the list is a 4K page aligned, physical memory 
address.  
The lower 12 bits in each pointer are reserved (except for the first one) as each 
memory pointer must reference the start of a 4K page. The field C_Page (see Table 
3-16) specifies the current active pointer. 
When the transfer element descriptor is fetched, the starting buffer address is selected 
using C_Page (similar to an array index to select an array element). If a transaction 
spans a 4K buffer boundary, the host controller must detect the page-span boundary 
in the data stream, increment C_Page and advance to the next buffer pointer in the 
list, and conclude the transaction via the new buffer pointer. Refer to 4.10.6 for a 
complete description of the host controller operational requirements.  

11:0 Current Offset (Reserved). This field is reserved in all pointers except the first one 
(e.g. Page 0). The host controller should ignore all reserved bits. For the page 0 
current offset interpretation, this field is the byte offset into the current page (as 
selected by C_Page).  
The host controller is not required to write this field back when the qTD is retired (see 
Section 4.10.4). 
Software should ensure the Reserved fields are initialized to zeros. 
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3.6 Queue Head 
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Figure 3-7. Queue Head Structure Layout 

 

3.6.1 Queue Head Horizontal Link Pointer  
The first DWord of a Queue Head contains a link pointer to the next data object to be processed after any 
required processing in this queue has been completed, as well as the control bits defined below. 

This pointer may reference a queue head (Section 3.6) or one of the isochronous transfer descriptors ( 
(Sections 3.3 and 3.4). It must not reference a queue element transfer descriptor (Section 3.5). 

Table 3-18. Queue Head DWord 0 

Bit Description 

31:5 Queue Head Horizontal Link Pointer (QHLP). This field contains the address of the 
next data object to be processed in the horizontal list and corresponds to memory 
address signals [31:5], respectively.  

4:3 Reserved. These bits must be written as 0s. 
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Table 3-18. Queue Head DWord 0 (cont.) 

Bit Description 

2:1 QH/(s)iTD/FSTN Select (Typ). This field indicates to the hardware whether the item 
referenced by the link pointer is a iTD, siTD or a QH. This allows the Host Controller to 
perform the proper type of processing on the item after it is fetched. Value encodings are: 

Value Meaning 
00b iTD (isochronous transfer descriptor) 
01b QH (queue head) 
10b siTD (split transaction isochronous transfer descriptor) 
11b FSTN (Frame Span Traversal Node) 

0 Terminate (T). 1=Last QH (pointer is invalid). 0=Pointer is valid. If the queue head is in 
the context of the periodic list, a one bit in this field indicates to the host controller that 
this is the end of the periodic list. This bit is ignored by the host controller when the queue 
head is in the Asynchronous schedule. Software must ensure that queue heads 
reachable by the host controller always have valid horizontal link pointers. See Section 
4.8.2 

3.6.2 Endpoint Capabilities/Characteristics  
The second and third Dwords of a Queue Head specifies static information about the endpoint. This 
information does not change over the lifetime of the endpoint. There are three types of information in this 
region:  

•  Endpoint Characteristics. These are the USB endpoint characteristics including addressing, maximum 
packet size, and endpoint speed.  

•  Endpoint Capabilities. These are adjustable parameters of the endpoint. They effect how the endpoint 
data stream is managed by the host controller. See Section 4.10. 

•  Split Transaction Characteristics. This data structure is used to manage full- and low-speed data 
streams for bulk, control, and interrupt via split transactions to USB 2.0 Hub Transaction Translator. 
There are additional fields used for addressing the hub and scheduling the protocol transactions (for 
periodic). See Section 4.12. 

The host controller must not modify the bits in this region. 

Table 3-19. Endpoint Characteristics: Queue Head DWord 1 

Bit Description 

31:28 Nak Count Reload (RL). This field contains a value, which is used by the host controller 
to reload the Nak Counter field. 

27 Control Endpoint Flag (C). If the QH.EPS field indicates the endpoint is not a high-speed 
device, and the endpoint is an control endpoint, then software must set this bit to a one. 
Otherwise it should always set this bit to a zero. 

26:16 Maximum Packet Length. This directly corresponds to the maximum packet size of the 
associated endpoint (wMaxPacketSize).  
The maximum value this field may contain is 0x400 (1024).  

15 Head of Reclamation List Flag (H).  This bit is set by System Software to mark a queue 
head as being the head of the reclamation list. See Section 4.8 for operational model. 

14 Data Toggle Control (DTC). This bit specifies where the host controller should get the 
initial data toggle on an overlay transition.  

0b Ignore DT bit from incoming qTD. Host controller preserves DT bit in the queue 
head. 

1b Initial data toggle comes from incoming qTD DT bit. Host controller replaces 
DT bit in the queue head from the DT bit in the qTD. 
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Table 3-19. Endpoint Characteristics: Queue Head DWord 1 (cont.) 

Bit Description 

13:12 Endpoint Speed (EPS). This is the speed of the associated endpoint. Bit combinations 
are: 

Value Meaning 
00b Full-Speed (12Mbs)  
01b Low-Speed (1.5Mbs) 
10b High-Speed (480 Mb/s) 
11b Reserved 

This field must not be modified by the host controller. 
11:8 Endpoint Number (Endpt). This 4-bit field selects the particular endpoint number on the 

device serving as the data source or sink.  
7 Inactivate on Next Transaction (I). This bit is used by system software to request that the 

host controller set the Active bit to zero. See Section 4.12.2.5 for full operational details. 
This field is only valid when the queue head is in the Periodic Schedule and the EPS field 
indicates a Full or Low-speed endpoint. Setting this bit to a one when the queue head is in 
the Asynchronous Schedule or the EPS field indicates a high-speed device yields 
undefined results. 

6:0 Device Address. This field selects the specific device serving as the data source or sink. 
 

Table 3-20. Endpoint Capabilities: Queue Head DWord 2 

Bit Description 

31:30 High-Bandwidth Pipe Multiplier (Mult). This field is a multiplier used to key the host 
controller as the number of successive packets the host controller may submit to the 
endpoint in the current execution. The host controller makes the simplifying assumption 
that software properly initializes this field (regardless of location of queue head in the 
schedules or other run time parameters). See Section 4.10.3 for correct software 
operational model. The valid values are: 

Value Meaning 
00b Reserved. A zero in this field yields undefined results. 
01b One transaction to be issued for this endpoint per micro-frame 
10b Two transactions to be issued for this endpoint per micro-frame 
11b Three transactions to be issued for this endpoint per micro-frame 

29:23 Port Number. This field is ignored by the host controller unless the EPS field indicates a 
full- or low-speed device. The value is the port number identifier on the USB 2.0 Hub (for 
hub at device address Hub Addr below), below which the full- or low-speed device 
associated with this endpoint is attached. This information is used in the split-transaction 
protocol. See Section 4.12. 

22:16 Hub Addr. This field is ignored by the host controller unless the EPS field indicates a full- 
or low-speed device. The value is the USB device address of the USB 2.0 Hub below 
which the full- or low-speed device associated with this endpoint is attached. This field is 
used in the split-transaction protocol. See Section 4.12. 
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Table 3-20. Endpoint Capabilities: Queue Head DWord 2 (cont.) 

Bit Description 

15:8 Split Completion Mask (µµµµFrame C-Mask). This field is ignored by the host controller 
unless the EPS field indicates this device is a low- or full-speed device and this queue 
head is in the periodic list. This field (along with the Active and SplitX-state fields) is used 
to determine during which micro-frames the host controller should execute a complete-split 
transaction. When the criteria for using this field are met, a zero value in this field has 
undefined behavior. 
This field is used by the host controller to match against the three low-order bits of the 
FRINDEX register. If the FRINDEX register bits decode to a position where the µFrame C-
Mask field is a one, then this queue head is a candidate for transaction execution. See 
Section 4.10.3 for a comprehensive list of criteria that must be met before host controller 
will execute a transaction. 
There may be more than one bit in this mask set. See Section 4.12.2.1. 

7:0 Interrupt Schedule Mask (µµµµFrame S-mask). This field is used for all endpoint speeds. 
Software should set this field to a zero when the queue head is on the asynchronous 
schedule. A non-zero value in this field indicates an interrupt endpoint. 
The host controller uses the value of the three low-order bits of the FRINDEX register as 
an index into a bit position in this bit vector. If the µFrame S-mask field has a one at the 
indexed bit position then this queue head is a candidate for transaction execution. See 
Section 4.10.3 for a comprehensive list of criteria that must be met before host controller 
will execute a transaction. 
If the EPS field indicates the endpoint is a high-speed endpoint, then the transaction 
executed is determined by the PID_Code field contained in the execution area.  
This field is also used to support split transaction types: Interrupt (IN/OUT). See Section 
4.12.2. This condition is true when this field is non-zero and the EPS field indicates this is 
either a full- or low-speed device.  
A zero value in this field, in combination with existing in the periodic frame list has 
undefined results.  

 

3.6.3 Transfer Overlay  
The nine DWords in this area represent a transaction working space for the host controller. The general 
operational model is that the host controller can detect whether the overlay area contains a description of an 
active transfer. If it does not contain an active transfer, then it follows the Queue Head Horizontal Link 
Pointer to the next queue head. The host controller will never follow the Next Transfer Queue Element or 
Alternate Queue Element pointers unless it is actively attempting to advance the queue (see Section 4.10). 
For the duration of the transfer, the host controller keeps the incremental status of the transfer in the overlay 
area. When the transfer is complete, the results are written back to the original queue element. The complete 
operational model of how this area is used by the host controller is described in Section 4.10. 

The DWord 3 of a Queue Head contains a pointer to the source qTD currently associated with the overlay. 
The host controller uses this pointer to write back the overlay area into the source qTD after the transfer is 
complete. 
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Table 3-21. Current qTD Link Pointer 

Bit Description 

31:5 Current Element Transaction Descriptor Link Pointer. This field contains the address 
of the current transaction being processed in this queue and corresponds to memory 
address signals [31:5], respectively. 

4:0 Reserved (R).  These bits are ignored by the host controller when using the value as an 
address to write data. The actual value may vary depending on the usage. 

The DWords 4-11 of a queue head are the transaction overlay area. This area has the same base structure as 
a Queue Element Transfer Descriptor, defined in Section 3.5. The queue head utilizes the reserved fields of 
the page pointers defined in Figure 3-7 to implement tracking the state of split transactions.  

This area is characterized as an overlay because when the queue is advanced to the next queue element, the 
source queue element is merged onto this area. This area serves an execution cache for the transfer. Section 
4.10 describes which fields in the queue head are over-written during queue advancement.  

Table 3-22. Host-Controller Rules for Bits in Overlay (DWords 5, 6, 8 and 9) 

Dword Bit Description 

5 4:1 Nak Counter (NakCnt) RW. This field is a counter the host controller 
decrements whenever a transaction for the endpoint associated with this 
queue head results in a Nak or Nyet response. This counter is reloaded from 
RL before a transaction is executed during the first pass of the reclamation list 
(relative to an Asynchronous List Restart condition). See Section 4.9. It is also 
loaded from RL during an overlay. See Section 4.10.2. 

6 31 Data Toggle. The Data Toggle Control controls whether the host controller 
preserves this bit when an overlay operation is performed.  

6 15 Interrupt On Complete (IOC). The IOC control bit is always inherited from 
the source qTD when the overlay operation is performed. 

6 11:10 Error Counter (C_ERR). This two-bit field is copied from the qTD during the 
overlay and written back during queue advancement. Refer to Table 3-16 for 
details. 

6 0 Ping State (P)/ERR. If the EPS field indicates a high-speed endpoint, then 
this field should be preserved during the overlay operation. 

8 7:0 Split-transaction Complete-split Progress (C-prog-mask). This field is 
initialized to zero during any overlay.  
This field is used to track the progress of an interrupt split-transaction. See 
Section 4.12.2 for details of the operational model.  

9 4:0 Split-transaction Frame Tag (Frame Tag). This field is initialized to zero 
during any overlay. 
This field is used to track the progress of an interrupt split-transaction. See 
Section 4.12.2 for details of the operational model. 

9 11:5 S-bytes. Software must ensure that the S-bytes field in a qTD are zero before 
activating the qTD. 
This field is used to keep track of the number of bytes sent or received during 
a IN or OUT split transaction. Refer to Section 4.12.2 for details of the 
operational model. 
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3.7 Periodic Frame Span Traversal Node (FSTN) 
This data structure is to be used only for managing Full- and Low-speed transactions that span a Host-frame 
boundary. See Section 4.12.2.2 for full operational details. Software must not use an FSTN in the 
Asynchronous Schedule. An FSTN in the Asynchronous schedule results in undefined behavior. Software 
must not use the FSTN feature with a host controller whose HCIVERSION register indicates a revision 
implementation below 0096h. FSTNs are not defined for implementations before 0.96 and their use will 
yield undefined results. 

0 1 2 3 4 5 6 7 8 9 10111213141516171819 20 21 22 23 24 25 26 27 28 29 30 31 

03-00H

07-04H

Normal Path Link Pointer T 0 

Back Path Link Pointer 0 

Typ 

T Typ 

Must be set to indicate a Queue Head 

Host Controller Read/Write  Host Controller Read Only  
Figure 3-8. Frame Span Traversal Node Structure Layout 

3.7.1 FSTN Normal Path Pointer 
The first DWord of an FSTN contains a link pointer to the next schedule object. This object can be of any 
valid periodic schedule data type. 

Bit Description 

31:5 Normal Path Link Pointer (NPLP). This field contains the address of the next data 
object to be processed in the periodic list and corresponds to memory address signals 
[31:5], respectively.  

4:3 Reserved. These bits must be written as 0s. 
2:1 QH/(s)iTD/FSTN Select (Typ). This field indicates to the Host Controller whether the item 

referenced is a iTD/siTD, a QH or an FSTN. This allows the Host Controller to perform 
the proper type of processing on the item after it is fetched. Value encodings are: 

Value Meaning 
00b iTD (isochronous transfer descriptor) 
01b QH (queue head) 
10b siTD (split transaction isochronous transfer descriptor) 
11b FSTN (Frame Span Traversal Node) 

0 Terminate (T). 1=Link Pointer field is not valid. 0=Link Pointer is valid.  
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3.7.2 FSTN Back Path Link Pointer 
The second DWord of an FTSN node contains a link pointer to a queue head. If the T-bit in this pointer is a 
zero, then this FSTN is a Save-Place indicator. Its Typ field must be set by software to indicate the target 
data structure is a queue head. If the T-bit in this pointer is set to a one, then this FSTN is the Restore 
indicator. When the T-bit is a one, the host controller ignores the Typ field. 

Bit Description 

31:5 Back Path Link Pointer (BPLP). This field contains the address of a Queue Head. This 
field corresponds to memory address signals [31:5], respectively.  

4:3 Reserved. These bits must be written as 0s. 
2:1 Typ. Software must ensure this field is set to indicate the target data structure is a Queue 

Head. Any other value in this field yields undefined results.  

0 Terminate (T). 1=Link Pointer field is not valid (i.e. the host controller must not use bits 
[31:5] (in combination with the CTRLDSSEGMENT register if applicable) as a valid 
memory address). This value also indicates that this FSTN is a Restore indicator. 
0=Link Pointer is valid (i.e. the host controller may use bits [31:5] (in combination with the 
CTRLDSSEGMENT register if applicable) as a valid memory address). This value also 
indicates that this FSTN is a Save-Place indicator. 
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4. Operational Model 
The general operational model is for the enhanced interface host controller hardware and enhanced interface 
host controller driver (generally referred to as system software). Each significant operational feature of the 
EHCI host controller is discussed in a separate section. Each section presents the operational model 
requirements for the host controller hardware. Where appropriate, recommended system software 
operational models for features are also presented.  

4.1 Host Controller Initialization 
When the system boots, the host controller is enumerated, assigned a base address for the register space and 
BIOS sets the FLADJ register to a system-specific value. After initial power-on or HCReset (hardware or via 
HCReset bit in the USBCMD register), all of the operational registers will be at their default values, as 
illustrated in Table 4–1. After a hardware reset, only the operational registers not contained in the Auxiliary 
power well will be at their default values. 

Table 4–1. Default Values of Operational Register Space 

Operational Register Default Value (after Reset) 

USBCMD 00080000h (00080B00h if Asynchronous Schedule Park Capability is a one) 

USBSTS 00001000h 

USBINTR 00000000h 

FRINDEX 00000000h 

CTRLDSSEGMENT 00000000h 

PERIODICLISTBASE Undefined 

ASYNCLISTADDR Undefined 

CONFIGFLAG 00000000h 

PORTSC 00002000h (w/PPC set to one); 00003000h (w/PPC set to a zero) 

In order to initialize the host controller, software should perform the following steps 

•  Program the CTRLDSSEGMENT register with 4-Gigabyte segment where all of the interface data 
structures are allocated. 

•  Write the appropriate value to the USBINTR register to enable the appropriate interrupts.  

•  Write the base address of the Periodic Frame List to the PERIODICLIST BASE register. If there are no 
work items in the periodic schedule, all elements of the Periodic Frame List should have their T-Bits set 
to a one. 

•  Write the USBCMD register to set the desired interrupt threshold, frame list size (if applicable) and turn 
the host controller ON via setting the Run/Stop bit.  

•  Write a 1 to CONFIGFLAG register to route all ports to the EHCI controller (see Section 4.2). 

At this point, the host controller is up and running and the port registers will begin reporting device 
connects, etc. System software can enumerate a port through the reset process (where the port is in the 
enabled state). At this point, the port is active with SOFs occurring down the enabled port enabled High-
speed ports, but the schedules have not yet been enabled. The EHCI Host controller will not transmit SOFs 
to enabled Full- or Low-speed ports. 

In order to communicate with devices via the asynchronous schedule, system software must write the 
ASYNDLISTADDR register with the address of a control or bulk queue head. Software must then enable 
the asynchronous schedule by writing a one to the Asynchronous Schedule Enable bit in the USBCMD 
register. In order to communicate with devices via the periodic schedule, system software must enable the 
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periodic schedule by writing a one to the Periodic Schedule Enable bit in the USBCMD register. Note that 
the schedules can be turned on before the first port is reset (and enabled).  

Any time the USBCMD register is written, system software must ensure the appropriate bits are preserved, 
depending on the intended operation. 

4.2 Port Routing and Control 
A USB 2.0 Host controller (as described in Section 1.1) is comprised of one high-speed host controller, 
which implements the EHCI programming interface and 0 to N USB 1.1 companion host controllers. 
Companion host controllers (cHCs) may be implementations of either Universal or Open host controller 
specifications. This configuration is used to deliver the required full USB 2.0-defined port capability; e.g. 
Low-, Full-, and High-speed capability for every port. Figure 4-1 illustrates a simple block diagram of the 
port routing logic and its relationship to the high-speed and companion host controllers within a USB 2.0 
host controller. 

Transceiver

Port RegData

Port 1

Companion
USB 1.1 HC1

High-speed
(ehci) HC

USB 2.0 Host Controller

Port RegData

Port
Owner

Port Routing
Logic

 
Figure 4-1. Example USB 2.0 Host Controller Port Routing Block Diagram 

There exists one transceiver per physical port and each host controller module has its own port status and 
control registers. The EHCI controller has port status and control registers for every port. Each companion 
host controller has only the port control and status registers it is required to operate. Each transceiver can be 
controlled by either the EHCI host controller or one companion host controller. Routing logic lies between 
the transceiver and the port status and control registers.2  The port routing logic is controlled from signals 
originating in the EHCI host controller. The EHCI host controller has a global routing policy control field 
and per-port ownership control fields. The Configured Flag (CF) bit (defined in Section 2.3.8) is the global 
routing policy control. At power-on or reset, the default routing policy is to the companion controllers (if 
they exist). If the system does not include a driver for the EHCI host controller and the host controller 
includes Companion Controllers, then the ports will still work in Full- and Low-speed mode (assuming the 
system includes a driver for the companion controllers). In general, when the EHCI owns the ports, the 
companion host controllers' port registers do not see a connect indication from the transceiver. Similarly, 
when a companion host controller owns a port, the EHCI controller's port registers do not see a connect 
indication from the transceiver. The details on the rules for the port routing logic are described in the 
following sections. 

The USB 2.0 host controller must be implemented as a multi-function PCI device if the implementation 
includes companion controllers. The companion host controllers’ function numbers must be less than the 
EHCI host controller function number. The EHCI host controller must be a larger function number with 
respect to the companion host controllers associated with this EHCI host controller. If a PCI device 

                                                           
2 The routing logic should not be implemented in the 480 MHz clock domain of the transceiver. 
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implementation contains only an EHCI controller (i.e. no companion controllers or other PCI functions), 
then the EHCI host controller must be function zero, in accordance with the PCI Specification. 

The N_CC field in the Structural Parameter register (HCSPARAMS) indicates whether the controller 
implementation includes companion host controllers. When N_CC has a non-zero value there exists 
companion host controllers. If N_CC has a value of zero, then the host controller implementation does not 
include companion host controllers. If the host controller root ports are exposed to attachment of full- or 
low-speed devices, the ports will always fail the high-speed chirp during reset and the ports will not be 
enabled. System software can notify the user of the illegal condition. This type of implementation requires a 
USB 2.0 hub be connected to a root port to provide full and low-speed device connectivity.  

System software uses information in the host controller capability registers to determine how the ports are 
routed to the companion host controllers. See Sections 2.2.5 and 2.2.3.3 

4.2.1 Port Routing Control via EHCI Configured (CF) Bit 
Each port in the USB 2.0 host controller can be routed either to a single companion host controller or to the 
EHCI host controller. The port routing logic is controlled by two mechanisms in the EHCI HC: a host 
controller global flag and per-port control. The Configured Flag (CF) bit (defined in Section 2.3.8), is used 
to globally set the policy of the routing logic. Each port register has a Port Owner control bit which allows 
the EHCI Driver to explicitly control the routing of individual ports. Whenever the CF bit transitions from a 
zero to a one (this transition is only available under program control) the port routing unconditionally routes 
all of the port registers to the EHCI HC (all Port Owner bits go to zero). While the CF-bit is a one, the EHCI 
Driver can control individual ports' routing via the Port Owner control bit. Likewise, whenever the CF bit 
transitions from a one to a zero (as a result of Aux power application, HCRESET, or software writing a zero 
to CF-bit), the port routing unconditionally routes all of the port registers to the appropriate companion HC. 
The default value for the EHCI HC’s CF bit (after Aux power application or HCRESET) is zero. Table 4–2 
summarizes the default routing for all the ports, based on the value of the EHCI HC’s CF bit.  

The view of the port depends on the current owner. A Universal or Open companion host controller will see 
port register bits consistent with the appropriate specification. Port bit definitions that are required for EHCI 
host controllers are not visible to companion host controllers. 

Table 4–2. Default Port Routing Depending on EHCI HC CF Bit 

HS CF Bit Default 
Port 

Ownership 
Explanation 

0B Companion 
HCs 

The companion host controllers own the ports and only Full- and 
Low-speed devices are supported in the system. The exact port 
assignments are implementation dependent.  
The ports behave only as Full- and Low-speed ports in this 
configuration.  

1B EHCI HC The EHCI host controller has default ownership over all of the ports. 
The routing logic inhibits device connect events from reaching the 
companion HCs' port status and control registers when the port 
owner is the EHCI HC.  
The EHCI HC has access to the additional port status and control 
bits defined in this specification (see Section 2.3.9). The EHCI HC 
can temporarily release control of the port to a companion HC by 
setting the PortOwner bit in the PORTSC register to a one. 

 

                                                           
3 If an implementation includes more than one set of companion and EHCI host controllers, they are organized as 
groups of companion host controllers with intermixed EHCI controllers. 
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4.2.2 Port Routing Control via PortOwner and Disconnect Event 
Manipulating the port routing via the CF-bit is an extreme process and not intended to be used during 
normal operation. The normal mode of port ownership transferal is on the granularity of individual ports 
using the Port Owner bit in the EHCI HC’s PORTSC register (for hand-offs from EHCI to companion host 
controllers). Individual port ownership is returned to the EHCI controller when the port registers a device 
disconnect. When the disconnect is detected, the port routing logic immediately returns the port ownership 
to the EHCI controller. The companion host controller port register detects the device disconnect and 
operates normally.  

Under normal operating conditions (assuming all HC drivers loaded and operational and the EHCI CF-bit is 
set to a one), the typical port enumeration sequence proceeds as illustrated below: 

•  Initial condition is that EHCI is port owner. A device is connected causing the port to detect a connect, 
set the port connect change bit and issue a port-change interrupt (if enabled).  

•  EHCI Driver identifies the port with the new connect change bit asserted and sends a change report to 
the hub driver. Hub driver issues a GetPortStatus() request and identifies the connect change. It then 
issues a request to clear the connect change, followed by a request to reset and enable the port. 

•  When the EHCI Driver receives the request to reset and enable the port, it first checks the value 
reported by the LineStatus bits in the PORTSC register. If they indicate the attached device is a full-
speed device (e.g. D+ is asserted), then the EHCI Driver sets the PortReset control bit to a one (and sets 
the PortEnable bit to a zero) which begins the reset-process. Software times the duration of the reset, 
then terminates reset signaling by writing a zero to the port reset bit. The reset process is actually 
complete when software reads a zero in the PortReset bit. The EHCI Driver checks the PortEnable bit 
in the PORTSC register. If set to a one, the connected device is a high-speed device and EHCI Driver 
(root hub emulator) issues a change report to the hub driver and the hub driver continues to enumerate 
the attached device. 

•  At the time the EHCI Driver receives the port reset and enable request the LineStatus bits might indicate 
a low-speed device. Additionally, when the port reset process is complete, the PortEnable field may 
indicate that a full-speed device is attached. In either case the EHCI driver sets the PortOwner bit in the 
PORTSC register to a one to release port ownership to a companion host controller.  

•  When the EHCI Driver sets PortOwner bit to a one, the port routing logic makes the connection state of 
the transceiver available to the companion host controller port register and removes the connection state 
from the EHCI HC port. The EHCI PORTSC register observes and reports a disconnect event via the 
disconnect change bit. The EHCI Driver detects the connection status change (either by polling or by 
port change interrupt) and then sends a change report to the hub driver. When the hub driver requests 
that port-state, the EHCI Driver responds with a reset complete change set to a one, a connect change 
set to a one and a connect status set to a zero. This information is derived directly from the EHCI port 
register. This will allow the hub driver to assume the device was disconnected during reset. It will 
acknowledge the change bits and wait for the next change event. While the EHCI controller does not 
own the port, it simply remains in a state where the port reports no device connected.  

The device-connect evaluation circuitry of the companion HC activates and detects the device, the 
companion Driver detects the connection and enumerates the port. 

When a port is routed to a companion HC, it remains under the control of the companion HC until the device 
is disconnected from the root port (ignoring for now the scenario where EHCI's CF-bit transitions from a 1b 
to a 0b). When a disconnect occurs, the disconnect event is detected by both the companion HC port control 
and the EHCI port ownership control. On the event, the port ownership is returned immediately to the EHCI 
controller. The companion HC stack detects the disconnect and acknowledges as it would in an ordinary 
standalone implementation. Subsequent connects will be detected by the EHCI port register and the process 
will repeat. 
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4.2.3 Example Port Routing State Machine 
Figure 4-2 illustrates an example of how the port ownership should be managed. The following sections 
describe the entry conditions to each state. 

EHCI
Owner Companion

 Owner

PortOwner .neq. 0
.AND.

EHCI CF .eq. 1

((PortOwner .eq. 0)
.OR.

Disconnect)
.AND.

EHCI CF .eq. 1

EHCI CF 0 →1
EHCI CF = 0

 
Figure 4-2. Port Owner Handoff State Machine 

4.2.3.1 EHCI HC Owner 
Entry to this state occurs whenever one of the following events occur: 

•  When the EHCI HC’s Configure Flag (CF) bit in the CONFIGFLAG register transitions from a zero to 
a one. This signals the fact that the system has a host controller driver for the EHCI HC and that all 
ports in the USB 2.0 host controller must default route to the EHCI controller. 

•  When the port is owned by a companion HC and the device is disconnected from the port. The EHCI 
port routing control logic is notified of the the disconnect, and returns port routing to the EHCI 
controller. The connection state of the companion HC goes immediately to the disconnected state (with 
appropriate side effect to connect change, enable and enable change). The companion HC driver will 
acknowledge the disconnect by setting the connect status change bit to a zero. This allows the 
companion HC's driver to interact with the port completely through the disconnect process. 

•  When system software writes a zero to the PortOwner bit in the PORTSC register. This allows software 
to take ownership of a port from a companion host controller. When this occurs, the routing logic to the 
companion HC effectively signals a disconnect to the companion HC's port status and control register.  

4.2.3.2 Companion HC Owner 
Entry to this state occurs whenever one of the following events occur: 

•  When the Port Owner field transitions from a zero to a one. 

•  When the HS-mode HC’s Configure Flag (CF) is equal to zero. 

On entry to this state, the routing logic allows the companion HC port register to detect a device connect. 
Normal port enumeration proceeds.  

4.2.4 Port Power 
The Port Power Control (PPC) bit in the HCSPARAMS register indicates whether the USB 2.0 host 
controller has port power control (See Section 2.2.3). When this bit is a zero, then the host controller does 
not support software control of port power switches. When in this configuration, the port power is always 
available and the companion host controllers must implement functionality consistent with port power 
always on. 

When the PPC bit is a one, then the host controller implementation includes port power switches. Each 
available switch has an output enable, which is referred to in this discussion as PortPowerOutputEnable 
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(PPE). PPE is controlled based on the state of the combination bits PPC bit, EHCI Configured (CF)-bit and 
individual Port Power (PP) bits. Table 4–3 illustrates the summary behavioral model.  

Table 4–3. Port Power Enable Control Rules 

CF CHC2 
(PP) 

EHC3 
(PP) 

Owner PPE1 Description 

0 0 X CHC 0 When the EHCI controller has not been configured, 
the port is owned by the companion host controller. 
When the companion HC's port power select is off, 
then the port power is off.  

0 1 X CHC 1 Similar to previous entry. When the companion HC's 
port power select is on, then the port power is on. 

1 0 0 CHC 0 Port owner has port power turned off, the power to 
port is off. 

1 0 0 EHC 0 Port owner has port power turned off, the power to 
port is off. 

1 0 1 EHC 1 Port owner has port power on, so power to port is 
on. 

1 0 1 CHC 1 If either HC has port power turned on, the power to 
the port is on. 

1 1 0 EHC 1 If either HC has port power turned on, the power to 
the port is on. 

1 1 0 CHC 1 Port owner has port power on, so power to port is 
on. 

1 1 1 CHC 1 Port owner has port power on, so power to port is 
on. 

1 1 1 EHC 1 Port owner has port power on, so power to port is 
on. 

1PPE (Port Power Enable). This bit actually turns on the port power switch (if one exists). 
2CHC (Companion Host Controller). 
3EHC (EHCI Host Controller). 

4.2.5 Port Reporting Over-Current 
Host controllers are by definition power providers on USB. Whether the ports are considered high- or low-
powered is a platform implementation issue. Each EHCI PORTSC register has an over-current status and 
over-current change bit. The functionality of these bits is specified in the USB Specification Revision 2.0.  

The over current detection and limiting logic usually resides outside the host controller logic. This logic may 
be associated with one or more ports. When this logic detects an over-current condition it is made available 
to both the companion and EHCI ports. The effect of an over-current status on a companion host controller 
port is beyond the scope of this document. The over-current condition effects the following bits in the 
PORTSC register on the EHCI port: 

•   Over-current Active bits are set to a one. When the over-current condition goes away, the Over-current 
Active bit will transition from a one to a zero.  

•  Over-current Change bits are set to a one. On every transition of the Over-current Active bit the host 
controller will set the Over-current Change bit to a one. Software sets the Over-current Change bit to a 
zero by writing a one to this bit. 

•  Port Enabled/Disabled bit is set to a zero. When this change bit gets set to a one, then the Port Change 
Detect bit in the USBSTS register is set to a one. 
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•  Port Power (PP) bits may optionally be set to a zero. There is no requirement in USB that a power 
provider shut off power in an over current condition. It is sufficient to limit the current and leave power 
applied. 

When the Over-current Change bit transitions from a zero to a one, the host controller also sets the Port 
Change Detect bit in the USBSTS register to a one. In addition, if the Port Change Interrupt Enable bit in 
the USBINTR register is a one, then the host controller will issue an interrupt to the system. Refer to Table 
4–4 for summary behavior for over-current detection when the host controller is halted (suspended from a 
device component point of view). 

4.3 Suspend/Resume 
The EHCI host controller provides an equivalent suspend and resume model as that defined for individual 
ports in a USB 2.0 Hub. Control mechanisms are provided to allow system software to suspend and resume 
individual ports. The mechanisms allow the individual ports to be resumed completely via software 
initiation. Other control mechanisms are provided to parameterize the host controller's response (or 
sensitivity) to external resume events. In this discussion, host-initiated, or software initiated resumes are 
called Resume Events/Actions. Bus-initiated resume events are called wake-up events. The classes of wake-
up events are:  

•  Remote-wakeup enabled device asserts resume signaling. In similar kind to USB 2.0 Hubs, EHCI 
controllers must always respond to explicit device resume signaling and wake up the system (if 
necessary). 

•  Port connect and disconnect and over-current events. Sensitivity to these events can be turned on or off 
by using the per-port control bits in the PORTSC registers. 

Selective suspend is a feature supported by every PORTSC register. It is used to place specific ports into a 
suspend mode. This feature is used as a functional component for implementing the appropriate power 
management policy implemented in a particular operating system. 

When system software intends to suspend the entire bus, it should selectively suspend all enabled ports, then 
shut off the host controller by setting the Run/Stop bit in the USBCMD register to a zero. The EHCI module 
can then be placed into a lower device state via the PCI power management interface (See Appendix A).  

When a wake event occurs the system will resume operation and system software will eventually set the 
Run/Stop bit to a one and resume the suspended ports. Software must not set the Run/Stop bit to a one until it 
is confirmed that the clock to the host controller is stable. This is usually confirmed in a system 
implementation in that all of the clocks in the system are stable before the CPU is restarted. So, by 
definition, if software is running, clocks in the system are stable and the Run/Stop bit in the USBCMD 
register can be set to a one. There are also minimum system software delays defined in the PCI Power 
Management Specification. Refer to this specification for more information. 

4.3.1 Port Suspend/Resume 
System software places individual ports into suspend mode by writing a one into the appropriate PORTSC 
Suspend bit. Software must only set the Suspend bit when the port is in the enabled state (Port Enabled bit is 
a one) and the EHCI is the port owner (Port Owner bit is a zero).  

The host controller may evaluate the Suspend bit immediately or wait until a micro-frame or frame boundary 
occurs. If evaluated immediately, the port is not suspended until the current transaction (if one is executing) 
completes. Therefore, there may be several micro-frames of activity on the port until the host controller 
evaluates the Suspend bit. The host controller must evaluate the Suspend bit at least every frame boundary.  

System software can initiate a resume on a selectively suspended port by writing a one to the Force Port 
Resume bit. Software should not attempt to resume a port unless the port reports that it is in the suspended 
state (see Section 2.3.9). If system software sets Force Port Resume bit to a one when the port is not in the 
suspended state, the resulting behavior is undefined. In order to assure proper USB device operation, 
software must wait for at least 10 milliseconds after a port indicates that it is suspended (Suspend bit is a 
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one) before initiating a port resume via the Force Port Resume bit. When Force Port Resume bit is a one, 
the host controller sends resume signaling down the port. System software times the duration of the resume 
(nominally 20 milliseconds) then sets the Force Port Resume bit to a zero. When the host controller receives 
the write to transition Force Port Resume to zero, it completes the resume sequence as defined in the USB 
specification, and sets both the Force Port Resume and Suspend bits to zero. Software-initiated port resumes 
do not affect the Port Change Detect bit in the USBSTS register nor do they cause an interrupt if the Port 
Change Interrupt Enable bit in the USBINTR register is a one. 

An external USB event may also initiate a resume. The wake events are defined above. When a wake event 
occurs on a suspended port, the resume signaling is detected by the port and the resume is reflected 
downstream within 100 µsec. The port's Force Port Resume bit is set to a one and the Port Change Detect 
bit in the USBSTS register is set to a one. If the Port Change Interrupt Enable bit in the USBINTR register 
is a one the host controller will issue a hardware interrupt.  

System software observes the resume event on the port, delays a port resume time (nominally 20 msec), then 
terminates the resume sequence by writing zero to the Force Port Resume bit in the port. The host controller 
receives the write of zero to Force Port Resume, terminates the resume sequence and sets Force Port 
Resume and Suspend port bits to zero. Software can determine that the port is enabled (not suspended) by 
sampling the PORTSC register and observing that the Suspend and Force Port Resume bits are zero. 

Software must ensure that the host controller is running (i.e. HCHalted bit in the USBSTS register is a zero), 
before terminating a resume by writing a zero to a port's Force Port Resume bit. If HCHalted is a one when 
Force Port Resume is set to a zero, then SOFs will not occur down the enabled port and the device will 
return to suspend mode in a maximum of 10 milliseconds.  

Table 4–4 summarizes the wake-up events. Whenever a resume event is detected, the Port Change Detect 
bit in the USBSTS register is set to a one. If the Port Change Interrupt Enable bit is a one in the USBINTR 
register, the host controller will also generate an interrupt on the resume event. Software acknowledges the 
resume event interrupt by clearing the Port Change Detect status bit in the USBSTS register. 

Table 4–4. Behavior During Wake-up Events  

Device State Port Status and Signaling 
Type 

Signaled Port Response 
D0 not D0 

Port disabled,  
resume K-State received 

No Effect N/A N/A 

Port suspended, Resume K-
State received 

Resume reflected downstream on signaled port.  Force 
Port Resume status bit in PORTSC register is set to a one. 
Port Change Detect bit in USBSTS register set to a one.  

[1], [2] [2] 

Port is enabled, disabled or 
suspended, and the port's 
WKDSCNNT_E bit is a one. A 
disconnect is detected. 

Depending in the initial port state, the PORTSC Connect 
and Enable status bits are set to zero, and the Connect 
Change status bit is set to a one. Port Change Detect bit in 
the USBSTS register is set to a one.  

[1], [2]  [2] 

Port is enabled, disabled or 
suspended, and the port's 
WKDSCNNT_E bit is a zero. A 
disconnect is detected. 

Depending on the initial port state, the PORTSC Connect 
and Enable status bits are set to zero, and the Connect 
Change status bit is set to a one. Port Change Detect bit in 
the USBSTS register is set to a one.  

[1], [3]  [3] 

Port is not connected and the 
port's WKCNNT_E bit is a one. 
A connect is detected. 

PORTSC Connect Status and Connect Status Change bits 
are set to a one. Port Change Detect bit in the USBSTS 
register is set to a one.  

[1], [2]  [2] 

Port is not connected and the 
port's WKCNNT_E bit is a 
zero. A connect is detected. 

PORTSC Connect Status and Connect Status Change bits 
are set to a one. Port Change Detect bit in the USBSTS 
register is set to a one.  

[1], [3]  [3] 
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Table 4–4. Behavior During Wake-up Events (cont.) 

Device State Port Status and Signaling 
Type 

Signaled Port Response 
D0 Not D0 

Port is connected and the 
port's WKOC_E bit is a one. 
An over-current condition 
occurs. 

PORTSC Over-current Active, Over-current Change bits 
are set to a one. If Port Enable/Disable bit is a one, it is set 
to a zero. Port Change Detect bit in the USBSTS register 
is set to a one 

[1], [2] [2] 

Port is connected and the 
port's WKOC_E bit is a zero. 
An over-current condition 
occurs. 

PORTSC Over-current Active, Over-current Change bits 
are set to a one. If Port Enable/Disable bit is a one, it is set 
to a zero. Port Change Detect bit in the USBSTS register 
is set to a one. 

[1], [3]  [3] 

[1] Hardware interrupt issued if Port Change Interrupt Enable bit in the USBINTR register is a one. 
[2] PME# asserted if enabled (Note: PME Status must always be set to a one). 
[3] PME# not asserted. 

4.4 Schedule Traversal Rules 
The host controller executes transactions for devices using a simple, shared-memory schedule. The schedule 
is comprised of a few data structures, organized into two distinct lists. The data structures are designed to 
provide the maximum flexibility required by USB, minimize memory traffic and hardware / software 
complexity.  

System software maintains two schedules for the host controller: a periodic schedule and an asynchronous 
schedule. The root of the periodic schedule is the PERIODICLISTBASE register (see Section 2.3.6). The 
PERIODICLISTBASE register is the physical memory base address of the periodic frame list. The periodic 
frame list is an array of physical memory pointers. The objects referenced from the frame list must be valid 
schedule data structures as defined in Section 3. In each micro-frame, if the periodic schedule is enabled (see 
Section 4.6) then the host controller must execute from the periodic schedule before executing from the 
asynchronous schedule. It will only execute from the asynchronous schedule after it encounters the end of 
the periodic schedule. The host controller traverses the periodic schedule by constructing an array offset 
reference from the PERIODICLISTBASE and the FRINDEX registers (see Figure 4-3). It fetches the element 
and begins traversing the graph of linked schedule data structures.  

The end of the periodic schedule is identified by a next link pointer of a schedule data structure having its T-
bit set to a one. When the host controller encounters a T-Bit set to a one during a horizontal traversal of the 
periodic list, it interprets this as an End-Of-Periodic-List mark. This causes the host controller to cease 
working on the periodic schedule and transitions immediately to traversing the asynchronous schedule. Once 
this transition is made, the host controller executes from the asynchronous schedule until the end of the 
micro-frame. 

1 031 212 11

Frame Index Register

13 12 11 10 9 8 7 6 5 4 3 2 1 0
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Address
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Periodic Frame List Element
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Figure 4-3. Derivation of Pointer into Frame List Array 
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When the host controller determines that it is time to execute from the asynchronous list, it uses the 
operational register ASYNCLISTADDR to access the asynchronous schedule, see Figure 4-4.  

H

Operational
Registers

…

…

USBSTS

USBCMD

ASYNCLISTADDR

 
Figure 4-4. General Format of Asynchronous Schedule List 

The ASYNCLISTADDR register contains a physical memory pointer to the next queue head. When the host 
controller makes a transition to executing the asynchronous schedule, it begins by reading the queue head 
referenced by the ASYNCLISTADDR register. Software must set queue head horizontal pointer T-bits to a 
zero for queue heads in the asynchronous schedule. See Section 4.8 for complete operational details. 

4.4.1 Example - Preserving Micro-Frame Integrity 
One of the requirements of a USB host controller is to maintain Frame Integrity. This means that the HC 
must preserve the micro-frame boundaries. For example: SOF packets must be generated on time (within the 
specified allowable jitter), and High-speed EOF1,2 thresholds must be enforced. The end of micro-frame 
timing points EOF1 and EOF2 are clearly defined in the USB Specification Revision 2.0. 

One implication of this responsibility is that the HC must ensure that it does not start transactions that will 
not be completed before the end of the micro-frame. More precisely, no transactions should be started by the 
host controller, which cannot be completed in their entirety before the EOF1 point. In order to enforce this 
rule, the host controller must check each transaction before it starts to ensure that it will complete before the 
end of the micro-frame.  

So, what exactly needs to be involved in this check? Fundamentally, the transaction data payload, plus bit 
stuffing, plus transaction overhead must be taken into consideration. It is possible to be extremely accurate 
on how much time the next transaction will take. Take OUTs for an example. The host controller must fetch 
all of the OUT data from memory in order to send it onto the USB bus. A host controller implementation 
could pre-fetch all of the OUT data, and pre-compute the actual number of bits in the token and data 
packets. In addition, the system knows the depth of the target endpoint, so it could closely estimate 
turnaround time for handshake. In addition, the host controller knows the size of a handshake packet. Pre-
computing effects of bit stuffing and summing up the other overhead numbers could allow the host 
controller to know exactly whether there was enough bus time, before EOF1 to complete the OUT 
transaction. To accomplish this particular approach takes an inordinate amount of time and hardware 
complexity.  

The alternative is to make a reasonable guess whether the next transaction can be started. An example 
approximation algorithm is described below. This example algorithm relies on the EHCI policy that periodic 
transactions are scheduled first in the micro-frame. It is a reasonable assumption that software will never 
over-commit the micro-frame to periodic transactions greater than the specification allowable 80%. In the 
available remaining 20% bandwidth, the host controller has some ability (in this example) to decide whether 
or not to execute a transaction. The result of this algorithm is that sometimes, under some circumstances a 
transaction will not be executed that could have been executed. However, under all circumstances, a 
transaction will never be started unless there is enough time in the frame to complete the transaction. 
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4.4.1.1 Transaction Fit - A Best-Fit Approximation Algorithm 
A curve is calculated which represents the latest start time for every packet size, at which software will 
schedule the start of a periodic transaction. This curve is the 80% bandwidth curve. Another curve is 
calculated which is the absolute, latest permitted start time for every packet size. This curve represents the 
absolute latest time, that a transaction of each packet size can be started and completed, in the micro-frame. 
A plot of these two curves is illustrated in Figure 4-5. The plot Y-axis represents the number of byte-times 
left in a frame.  

The space between the 80% and the Last Start plots is bandwidth reclamation area. In this algorithm the host 
controller may skip transactions during this time if it is prudent.  

The Best-Fit Approximation method plots a function (f(x)) between the 80% and Last Start curves. The 
function f(x) adds a constant to every transaction's maximum packet size and the result compared with the 
number of bytes left in the frame. The constant represents an approximation of the effects of bit stuffing and 
protocol overhead. The host controller starts transactions whose results land above the function curve. The 
host controller will not start transactions whose results land below the function curve. 
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Figure 4-5. Best Fit Approximation 

The LastStart line was calculated in this example to assume the absolute worst-case bus overhead per 
transaction. The particular transaction used was a start-split, zero-length OUT transaction with a handshake. 
A summary of the component parts are listed in Table 4–5. The component times were derived from the 
protocol timings defined in the USB Specification Revision 2.0. 
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Table 4–5. Example Worse-case Transaction Timing Components 

Component Bit time Byte Times Explanation 

Split Token 76 9.5 Split token as defined in USB core specification. 
Includes sync, token, eop, etc. 

Host 2 Host IPG 88 11 Number of bit times required between consecutive 
host packets 

Token 67 8.375 Token as defined in USB core specification. Includes 
sync, token, eop, etc. 

Host 2 Host IPG 88 11 Same as above 

Data Packet (0 data bytes) 66.7 8.34 Zero-length data packet. Includes sync, PID, crc16, 
eop, etc. 

Turnaround time 721 90.125 Time for packet initiator (Host) to see the beginning of 
a response to a transmitted packet. 

Handshake packet 48 6 Handshake packet as defined in USB core 
specification. Includes sync, PID, eop, etc. 

  144 Total 

The exact details of the function (f(x)) are up to the particular implementation. However, it should be 
obvious that the goal is to minimize the area under the curve between the approximation function and the 
Last Start curve, without dipping below the LastStart line, while at the same time keeping the check as 
simple as possible for hardware implementation. The f(x) in Figure 4-5 was constructed using the following 
pseudo-code test on each transaction size data point. This algorithm assumes that the host controller keeps 
track of the remaining bits in the frame. 

Alorithm CheckTransactionWillFit (MaximumPacketSize, HC_BytesLeftInFrame)
Begin

Local Temp = MaximumPacketSize + 192
Local rvalue = TRUE

If MaximumPacketSize >= 128 then
Temp += 128

End If

If Temp > HC_BytesLeftInFrame then
Rvalue = FALSE

End If
Return rvalue

End

This algorithm takes two inputs, the current maximum packet size of the transaction and a hardware counter 
of the number of bytes left in the current micro-frame. It unconditionally adds a simple constant of 192 to 
the maximum packet size to account for a first-order effect of transaction overhead and bit stuffing. If the 
transaction size is greater than or equal to 128 bytes, then an additional constant of 128 is added to the 
running sum to account for the additional worst-case bit stuffing of payloads larger than 128. An inflection 
point was inserted at 128 because the f(x) plot was getting close to the LastStart line. 

4.5 Periodic Schedule Frame Boundaries vs Bus Frame Boundaries 
The USB Specification Revision 2.0 requires that the frame boundaries (SOF frame number changes) of the 
high-speed bus and the full- and low-speed bus(s) below USB 2.0 Hubs be strictly aligned. Super-imposed 
on this requirement is that USB 2.0 Hubs manage full- and low-speed transactions via a micro-frame 
pipeline (see start- (SS) and complete- (CS) splits illustrated in Figure 4-6). A simple, direct projection of 
the frame boundary model into the host controller interface schedule architecture creates tension (complexity 
for both hardware and software) between the frame boundaries and the scheduling mechanisms required to 
service the full- and low-speed transaction translator periodic pipelines.  
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Figure 4-6. Frame Boundary Relationship between HS bus and FS/LS Bus 

The simple projection, as Figure 4-6 illustrates, introduces frame-boundary wrap conditions for scheduling 
on both the beginning and end of a frame. In order to reduce the complexity for hardware and software, the 
host controller is required to implement a one micro-frame phase shift for its view of frame boundaries. The 
phase shift eliminates the beginning of frame and frame-wrap scheduling boundary conditions. 

The implementation of this phase shift requires that the host controller use one register value for accessing 
the periodic frame list and another value for the frame number value included in the SOF token. These two 
values are separate, but tightly coupled. The periodic frame list is accessed via the Frame List Index Register 
(FRINDEX) documented in Section 2.3.4 and initially illustrated in Section 4.4. Bits FRINDEX[2:0], 
represent the micro-frame number. The SOF value is coupled to the value of FRINDEX[13:3]. Both 
FRINDEX[13:3] and the SOF value are incremented based on FRINDEX[2:0]. It is required that the SOF 
value be delayed from the FRINDEX value by one micro-frame. The one micro-frame delay yields host 
controller periodic schedule and bus frame boundary relationship as illustrated in Figure 4-7. This 
adjustment allows software to trivially schedule the periodic start and complete-split transactions for full-
and low-speed periodic endpoints, using the natural alignment of the periodic schedule interface. The 
reasons for selecting this phase-shift are beyond the scope of this specification.  

Figure 4-7 illustrates how periodic schedule data structures relate to schedule frame boundaries and bus 
frame boundaries. To aid the presentation, two terms are defined. The host controller's view of the 1-
millisecond boundaries is called H-Frames. The high-speed bus's view of the 1-millisecond boundaries is 
called B-Frames.  
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Figure 4-7. Relationship of Periodic Schedule Frame Boundaries to Bus Frame Boundaries 

H-Frame boundaries for the host controller correspond to increments of FRINDEX[13:3]. Micro-frame 
numbers for the H-Frame  are tracked by FRINDEX[2:0]. B-Frame boundaries are visible on the high-speed 
bus via changes in the SOF token's frame number. Micro-frame numbers on the high-speed bus are only 
derived from the SOF token's frame number (i.e. the high-speed bus will see eight SOFs with the same 



EHCI Revision 1.0 3/12/2002 

66   USB 2.0 

frame number value). H-Frames  and B-Frames have the fixed relationship (i.e. B-Frames lag H-Frames by 
one micro-frame time) illustrated in Figure 4-7. 

The host controller's periodic schedule is naturally aligned to H-Frames. Software schedules transactions for 
full- and low-speed periodic endpoints relative the H-Frames. The result is these transactions execute on the 
high-speed bus at exactly the right time for the USB 2.0 Hub periodic pipeline. 

As described in Section 2.3.4, the SOF Value can be implemented as a shadow register (in this example, 
called SOFV), which lags the FRINDEX register bits [13:3] by one micro-frame count. Table 4–6 illustrates 
the required relationship between the value of FRINDEX and the value of SOFV. This lag behavior can be 
accomplished by incrementing FRINDEX[13:3] based on carry-out on the 7 to 0 increment of 
FRINDEX[2:0] and incrementing SOFV based on the transition of 0 to 1 of FRINDEX[2:0].  

Software is allowed to write to FRINDEX. Section 2.3.4 provides the requirements that software should 
adhere when writing a new value in FRINDEX.  

Table 4–6. Operation of FRINDEX and SOFV (SOF Value Register) 

Current Next 
FRINDEX[F] SOFV FRINDEX[µµµµF] FRINDEX[F] SOFV FRINDEX[µµµµF]

N N 111b N+1 N 000b 

N+1 N 000b N+1 N+1 001b 

N+1 N+1 001b N+1 N+1 010b 

N+1 N+1 010b N+1 N+1 011b 

N+1 N+1 011b N+1 N+1 100b 

N+1 N+1 100b N+1 N+1 101b 

N+1 N+1 101b N+1 N+1 110b 

N+1 N+1 110b N+1 N+1 111b 
Where [F] = [13:3]; [µF] = [2:0] 

4.6 Periodic Schedule 
The periodic schedule traversal is enabled or disabled via the Periodic Schedule Enable bit in the USBCMD 
register. If the Periodic Schedule Enable bit is set to a zero, then the host controller simply does not try to 
access the periodic frame list via the PERIODICLISTBASE register. Likewise, when the Periodic Schedule 
Enable bit is a one, then the host controller does use the PERIODICLISTBASE register to traverse the 
periodic schedule. The host controller will not react to modifications to the Periodic Schedule Enable 
immediately. In order to eliminate conflicts with split transactions, the host controller evaluates the Periodic 
Schedule Enable bit only when FRINDEX[2:0] is zero. System software must not disable the periodic 
schedule if the schedule contains an active split transaction work item that spans the 000b micro-frame. 
These work items must be removed from the schedule before the Periodic Schedule Enable bit is written to a 
zero. 

The Periodic Schedule Status bit in the USBSTS register indicates status of the periodic schedule. System 
software enables (or disables) the periodic schedule by writing a one (or zero) to the Periodic Schedule 
Enable bit in the USBCMD register. Software then can poll the Periodic Schedule Status bit to determine 
when the periodic schedule has made the desired transition. Software must not modify the Periodic Schedule 
Enable bit unless the value of the Periodic Schedule Enable bit equals that of the Periodic Schedule Status 
bit.  

The periodic schedule is used to manage all isochronous and interrupt transfer streams. The base of the 
periodic schedule is the periodic frame list. Software links schedule data structures to the periodic frame list 
to produce a graph of scheduled data structures. The graph represents an appropriate sequence of 
transactions on the USB. Figure 4-8 illustrates isochronous transfers (using iTDs and siTDs) with a period of 
one are linked directly to the periodic frame list. Interrupt transfers (are managed with queue heads) and 
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isochronous streams with periods other than one are linked following the period-one iTD/siTDs. Interrupt 
queue heads are linked into the frame list ordered by poll rate. Longer poll rates are linked first (e.g. closest 
to the periodic frame list), followed by shorter poll rates, with queue heads with a poll rate of one, on the 
very end. 
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Figure 4-8. Example Periodic Schedule 

 

4.7 Managing Isochronous Transfers Using iTDs 
The structure of an iTD is presented in 3.3. There are four distinct sections to an iTD:  

•  The first field is the Next Link Pointer. This field is for schedule linkage purposes only;  

•  Transaction description array. This area is an eight-element array. Each element represents control 
and status information for one micro-frame's worth of transactions for a single high-speed 
isochronous endpoint.  

•  The buffer page pointer array is a 7-element array of physical memory pointers to data buffers. 
These are 4K aligned pointers to physical memory.  

•  Endpoint capabilities. This area utilizes the unused low-order 12 bits of the buffer page pointer 
array. The fields in this area are used across all transactions executed for this iTD, including 
endpoint addressing, transfer direction, maximum packet size and high-bandwidth multiplier.  

4.7.1 Host Controller Operational Model for iTDs 
The host controller uses FRINDEX register bits [12:3] to index into the periodic frame list. This means that 
the host controller visits each frame list element eight consecutive times before incrementing to the next 
periodic frame list element. Each iTD contains eight transaction descriptions, which map directly to 
FRINDEX register bits [2:0]. Each iTD can span 8 micro-frames worth of transactions. 

When the host controller fetches an iTD, it uses FRINDEX register bits [2:0] to index into the transaction 
description array. If the active bit in the Status field of the indexed transaction description is set to zero, the 
host controller ignores the iTD and follows the Next pointer to the next schedule data structure.  

When the indexed active bit is a one the host controller continues to parse the iTD. It stores the indexed 
transaction description and the general endpoint information (device address, endpoint number, maximum 
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packet size, etc.). It also uses the Page Select (PG) field to index the buffer pointer array, storing the selected 
buffer pointer and the next sequential buffer pointer. For example, if PG field is a 0, then the host controller 
will store Page 0 and Page 1.  

The host controller constructs a physical data buffer address by concatenating the current buffer pointer (as 
selected using the current transaction description's PG field) and the transaction description's Transaction 
Offset field. The host controller uses the endpoint addressing information and I/O-bit to execute a transaction 
to the appropriate endpoint. When the transaction is complete, the host controller clears the active bit and 
writes back any additional status information to the Status field in the currently selected transaction 
description.  

The data buffer associated with the iTD must be virtually contiguous memory. Seven page pointers are 
provided to support eight high-bandwidth transactions regardless of the starting packet’s offset alignment 
into the first page. A starting buffer pointer (physical memory address) is constructed by concatenating the 
page pointer (example: page 0 pointer) selected by the active transaction descriptions’ PG (example value: 
00B) field with the transaction offset field. As the transaction moves data, the host controller must detect 
when an increment of the current buffer pointer will cross a page boundary. When this occurs the host 
controller simply replaces the current buffer pointer’s page portion with the next page pointer (example: 
page 1 pointer) and continues to move data. The size of each bus transaction is determined by the value in 
the Maximum Packet Size field. 

An iTD supports high-bandwidth pipes via the Mult (multiplier) field. When the Mult field is 1, 2, or 3, the 
host controller executes the specified number of Maximum Packet sized bus transactions for the endpoint in 
the current micro-frame. In other words, the Mult field represents a transaction count for the endpoint in the 
current micro-frame. If the Mult field is zero, the operation of the host controller is undefined. The transfer 
description is used to service all transactions indicated by the Mult field.  

For OUT transfers, the value of the Transaction X Length field represents the total bytes to be sent during 
the micro-frame. The Mult field must be set by software to be consistent with Transaction X Length and 
Maximum Packet Sixe. The host controller will send the bytes in Maximum Packet Size'd portions. After 
each transaction, the host controller decrements it's local copy of Transaction X Length by Maximum Packet 
Size. The number of bytes the host controller sends is always Maximum Packet Size or Transaction X 
Length, whichever is less. The host controller advances the transfer state in the transfer description, updates 
the appropriate record in the iTD and moves to the next schedule data structure. The maximum sized 
transaction supported is 3 x 1024 bytes.  

For IN transfers, the host controller issues Mult transactions. It is assumed that software has properly 
initialized the iTD to accommodate all of the possible data. During each IN transaction, the host controller 
must use Maximum Packet Size to detect packet babble errors. The host controller keeps the sum of bytes 
received in the Transaction X Length field. After all transactions for the endpoint have completed for the 
micro-frame, Transaction X Length contains the total bytes received. If the final value of Transaction X 
Length is less than the value of Maximum Packet Size, then less data than was allowed for was received from 
the associated endpoint. This short packet condition does not set the USBINT bit in the USBSTS register to a 
one. The host controller will not detect this condition. If the device sends more than Transaction X Length or 
Maximum Packet Size bytes (whichever is less), then the host controller will set the Babble Detected bit to a 
one and set the Active bit to a zero. Note, that the host controller is not required to update the iTD field 
Transaction X Length in this error scenario. 

If the Mult field is greater than one, then the host controller will automatically execute the value of Mult 
transactions. The host controller will not execute all Mult transactions if: 

•  The endpoint is an OUT and Transaction X Length goes to zero before all the Mult transactions have 
executed (ran out of data), or 

•  The endpoint is an IN and the endpoint delivers a short packet, or an error occurs on a transaction before 
Mult transactions have been executed. 

The end of micro-frame may occur before all of the transaction opportunities have been executed. When this 
happens, the transfer state of the transfer description is advanced to reflect the progress that was made, the 
result written back to the iTD and the host controller proceeds to processing the next micro-frame. Refer to 
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Appendix D for a table summary of the host controller required behavior for all the high-bandwidth 
transaction cases. 

4.7.2 Software Operational Model for iTDs 
A client buffer request to an isochronous endpoint may span 1 to N micro-frames. When N is larger than 
one, system software may have to use multiple iTDs to read or write data with the buffer (if N is larger than 
eight, it must use more than one iTD).  

Figure 4-9 illustrates the simple model of how a client buffer is mapped by system software to the periodic 
schedule (i.e. the periodic frame list and a set of iTDs). On the right is the client description of its request. 
The description includes a buffer base address plus additional annotations to identify which portions of the 
buffer should be used with each bus transaction. In the middle is the iTD data structures used by the system 
software to service the client request. Each iTD can be initialized to service up to 24 transactions, organized 
into eight groups of up to three transactions each. Each group maps to one micro-frame's worth of 
transactions. The EHCI controller does not provide per-transaction results within a micro-frame. It treats the 
per-micro-frame transactions as a single logical transfer. On the left is the host controller’s frame list. 
System software establishes references from the appropriate locations in the frame list to each of the 
appropriate iTDs. 

If the buffer is large, then system software can use a small set of iTDs to service the entire buffer. System 
software can activate the transaction description records (contained in each iTD) in any pattern required for 
the particular data stream.  
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Figure 4-9. Example Association of iTDs to Client Request Buffer 

As noted above, the client request includes a pointer to the base of the buffer and offsets into the buffer to 
annotate which buffer sections are to be used on each bus transaction that occurs on this endpoint. System 
software must initialize each transaction description in an iTD to ensure it uses the correct portion of the 
client buffer. For example, for each transaction description, the PG field is set to index the correct physical 
buffer page pointer and the Transaction Offset field is set relative to the correct buffer pointer page (e.g. the 
same one referenced by the PG field). When the host controller executes a transaction it selects a transaction 
description record based on FRINDEX[2:0]. It then uses the current Page Buffer Pointer (as selected by the 
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PG field) and concatenates to the transaction offset field. The result is a starting buffer address for the 
transaction. As the host controller moves data for the transaction, it must watch for a page wrap condition 
and properly advance to the next available Page Buffer Pointer. 

System software must not use the Page 6 buffer pointer in a transaction description where the length of the 
transfer will wrap a page boundary. Doing so will yield undefined behavior. The host controller hardware is 
not required to 'alias' the page selector to page zero. 

USB 2.0 isochronous endpoints can specify a period greater than one. Software can achieve the appropriate 
scheduling by linking iTDs into the appropriate frames (relative to the frame list) and by setting appropriate 
transaction description elements active bits to a one.  

4.7.2.1 Periodic Scheduling Threshold 
The Isochronous Scheduling Threshold field in the HCCPARAMS capability register is an indicator to 
system software as to how the host controller pre-fetches and effectively caches schedule data structures. It 
is used by system software when adding isochronous work items to the periodic schedule. The value of this 
field indicates to system software the minimum distance it can update isochronous data (relative to the 
current location of the host controller execution in the periodic list) and still have the host controller process 
them.  

The iTD and siTD data structures each describe 8 micro-frames worth of transactions. The host controller is 
allowed to cache one (or more) of these data structures in order to reduce memory traffic. There are three 
basic caching models that account for the fact the isochronous data structures span 8 micro-frames. The 
three caching models are: no caching, micro-frame caching and frame caching.  

When software is adding new isochronous transactions to the schedule, it always performs a read of the 
FRINDEX register to determine the current frame and micro-frame the host controller is currently executing. 
Of course, there is no information about where in the micro-frame the host controller is, so a constant 
uncertainty-factor of one micro-frame has to be assumed. Combining the knowledge of where the host 
controller is executing with the knowledge of the caching model allows the definition of simple algorithms 
for how closely software can reliably work to the executing host controller. 

No caching is indicated with a value of zero in the Isochronous Scheduling Threshold field. The host 
controller may pre-fetch data structures during a periodic schedule traversal (per micro-frame) but will 
always dump any accumulated schedule state at the end of the micro-frame. At the appropriate time relative 
to the beginning of every micro-frame, the host controller always begins schedule traversal from the frame 
list. Software can use the value of the FRINDEX register (plus the constant 1 uncertainty-factor) to 
determine the approximate position of the executing host controller. When no caching is selected, software 
can add an isochronous transaction as near as 2 micro-frames in front of the current executing position of the 
host controller. 

Frame caching is indicated with a non-zero value in bit [7] of the Isochronous Scheduling Threshold field. In 
the frame-caching model, system software assumes that the host controller caches one (or more) isochronous 
data structures for an entire frame (8 micro-frames). Software uses the value of the FRINDEX register (plus 
the constant 1 uncertainty) to determine the current micro-frame/frame (assume modulo 8 arithmetic in 
adding the constant 1 to the micro-frame number). For any current frame N, if the current micro-frame is 0 
to 6, then software can safely add isochronous transactions to Frame N + 1. If the current micro-frame is 7, 
then software can add isochronous transactions to Frame N + 2. 

Micro-frame caching is indicated with a non-zero value in the least-significant 3 bits of the Isochronous 
Scheduling Threshold field. System software assumes the host controller caches one or more periodic data 
structures for the number of micro-frames indicated in the Isochronous Scheduling Threshold field. For 
example, if the count value were 2, then the host controller keeps a window of 2 micro-frames worth of state 
(current micro-frame, plus the next) on-chip. On each micro-frame boundary, the host controller releases the 
current micro-frame state and begins accumulating the next micro-frame state. 
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4.8 Asynchronous Schedule 
The Asynchronous schedule traversal is enabled or disabled via the Asynchronous Schedule Enable bit in the 
USBCMD register. If the Asynchronous Schedule Enable bit is set to a zero, then the host controller simply 
does not try to access the asynchronous schedule via the ASYNCLISTADDR register. Likewise, when the 
Asynchronous Schedule Enable bit is a one, then the host controller does use the ASYNCLISTADDR  register 
to traverse the asynchronous schedule. Modifications to the Asynchronous  Schedule Enable bit are not 
necessarily immediate. Rather the new value of the bit will only be taken into consideration the next time the 
host controller needs to use the value of the ASYNCLISTADDR register to get the next queue head. 

The Asynchronous Schedule Status bit in the USBSTS register indicates status of the asynchronous 
schedule. System software enables (or disables) the asynchronous schedule by writing a one (or zero) to the 
Asynchronous Schedule Enable bit in the USBCMD register. Software then can poll the Asynchronous 
Schedule Status bit to determine when the asynchronous schedule has made the desired transition. Software 
must not modify the Asynchronous Schedule Enable bit unless the value of the Asynchronous Schedule 
Enable bit equals that of the Asynchronous Schedule Status bit. 

The asynchronous schedule is used to manage all Control and Bulk transfers. Control and Bulk transfers are 
managed using queue head data structures. The asynchronous schedule is based at the ASYNCLISTADDR 
register. The default value of the ASYNCLISTADDR register after reset is undefined and the schedule is 
disabled when the Asynchronous Schedule Enable bit is a zero.  

Software may only write this register with defined results when the schedule is disabled .e.g. Asynchronous 
Schedule Enable bit in the USBCMD and the Asynchronous Schedule Status bit in the USBSTS register are 
zero. System software enables execution from the asynchronous schedule by writing a valid memory address 
(of a queue head) into this register. Then software enables the asychronous schedule by setting the 
Asynchronous Schedule Enable bit is set to one. The asynchronous schedule is actually enabled when the 
Asynchronous Schedule Status bit is a one.  

When the host controller begins servicing the asynchronous schedule, it begins by using the value of the 
ASYNCLISTADDR register. It reads the first referenced data structure and begins executing transactions and 
traversing the linked list as appropriate. When the host controller "completes" processing the asynchronous 
schedule, it retains the value of the last accessed queue head's horizontal pointer in the ASYNCLISTADDR 
register. Next time the asynchronous schedule is accessed, this is the first data structure that will be serviced. 
This provides round-robin fairness for processing the asynchronous schedule.  

A host controller "completes" processing the asynchronous schedule when one of the following events 
occur: 

•  The end of a micro-frame occurs. 

•  The host controller detects an empty list condition (i.e. see Section 4.8.3) 

•  The schedule has been disabled via the Asynchronous Schedule Enable bit in the USBCMD 
register. 

The queue heads in the asynchronous list are linked into a simple circular list as shown in Figure 4-4. Queue 
head data structures are the only valid data structures that may be linked into the asynchronous schedule. An 
isochronous transfer descriptor (iTD or siTD) in the asynchronous schedule yields undefined results.  

The maximum packet size field in a queue head is sized to accommodate the use of this data structure for all 
non-isochronous transfer types. The USB Specification, Revision 2.0 specifies the maximum packet sizes 
for all transfer types and transfer speeds. System software should always parameterize the queue head data 
structures according to the core specification requirements.  

4.8.1 Adding Queue Heads to Asynchronous Schedule 
This is a software requirement section. There are two independent events for adding queue heads to the 
asynchronous schedule. The first is the initial activation of the asynchronous list. The second is inserting a 
new queue head into an activated asynchronous list.  
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Activation of the list is simple. System software writes the physical memory address of a queue head into 
the ASYNCLISTADDR register, then enables the list by setting the Asynchronous Schedule Enable bit in the 
USBCMD register to a one.  

When inserting a queue head into an active list, software must ensure that the schedule is always coherent 
from the host controllers' point of view. This means that the system software must ensure that all queue head 
pointer fields are valid. For example qTD pointers have T-Bits set to a one or reference valid qTDs and the 
Horizontal Pointer references a valid queue head data structure. The following algorithm represents the 
functional requirements: 

InsertQueueHead (pQHeadCurrent, pQueueHeadNew)
--
-- Requirement: all inputs must be properly initialized.
--
-- pQHeadCurrent is a pointer to a queue head that is already in the active list
-- pQHeadNew is a pointer to the queue head to be added
--
-- This algorithm links a new queue head into a existing list
--
pQueueHeadNew.HorizontalPointer = pQueueHeadCurrent.HorizontalPointer
pQueueHeadCurrent.HorizontalPointer = physicalAddressOf(pQueueHeadNew)

End InsertQueueHead

4.8.2 Removing Queue Heads from Asynchronous Schedule 
This is a software requirement section. There are two independent events for removing queue heads from the 
asynchronous schedule. The first is shutting down (deactivating) the asynchronous list. The second is 
extracting a single queue head from an activated list. 

Software deactivates the asynchronous schedule by setting the Asynchronous Schedule Enable bit in the 
USBCMD register to a zero. Software can determine when the list is idle when the Asynchronous Schedule 
Status bit in the USBSTS register is a zero. 

The normal mode of operation is that software removes queue heads from the asynchronous schedule 
without shutting it down. Software must not remove an active queue head from the schedule. Software 
should first deactivate all active qTDs, wait for the queue head to go inactive, then remove the queue head 
from the asynchronous list. Software removes a queue head from the asynchronous list via the following 
algorithm. As illustrated, the unlinking is quite easy. Software merely must ensure all of the link pointers 
reachable by the host controller are kept consistent. 

UnlinkQueueHead (pQHeadPrevious, pQueueHeadToUnlink, pQHeadNext)
--
-- Requirement: all inputs must be properly initialized.
--
-- pQHeadPrevious is a pointer to a queue head that references the
-- queue head to remove
-- pQHeadToUnlink is a pointer to the queue head to be removed
-- pQheadNext is a pointer to a queue head still in the schedule. Software
-- provides this pointer with the following strict rules:
-- if the host software is one queue head, then pQHeadNext must be the
-- same as pQueueheadToUnlink.HorizontalPointer. If the host software is
-- unlinking a consecutive series of queue heads, pQHeadNext must be
-- set by software to the queue head remaining in the schedule.
-- This algorithm unlinks a queue head from a circular list
--
pQueueHeadPrevious.HorizontalPointer = pQueueHeadToUnlink.HorizontalPointer
pQueueHeadToUnlink.HorizontalPointer = pQHeadNext

End UnlinkQueueHead

If software removes the queue head with the H-bit set to a one, it must select another queue head still linked 
into the schedule and set its H-bit to a one. This should be completed before removing the queue head. The 
requirement is that software keep one queue head in the asynchronous schedule, with its H-bit set to a one. 

At the point software has removed one or more queue heads from the asynchronous schedule, it is unknown 
whether the host controller has a cached pointer to them. Similarly, it is unknown how long the host 
controller might retain the cached information, as it is implementation dependent and may be affected by the 
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actual dynamics of the schedule load. Therefore, once software has removed a queue head from the 
asynchronous list, it must retain the coherency of the queue head (link pointers, etc.). It cannot disturb the 
removed queue heads until it knows that the host controller does not have a local copy of a pointer to any of 
the removed data structures.  

The method software uses to determine when it is safe to modify a removed queue head is to handshake with 
the host controller. The handshake mechanism allows software to remove items from the asynchronous 
schedule, then execute a simple, lightweight handshake that is used by software as a key that it can free (or 
reuse) the memory associated the data structures it has removed from the asynchronous schedule.  

The handshake is implemented with three bits in the host controller. The first bit is a command bit (Interrupt 
on Async Advance Doorbell bit in the USBCMD register) that allows software to inform the host controller 
that something has been removed from its asynchronous schedule. The second bit is a status bit (Interrupt on 
Async Advance bit in the USBSTS register) that the host controller sets after it has released all on-chip state 
that may potentially reference one of the data structures just removed. When the host controller sets this 
status bit to a one, it also sets the command bit to a zero. The third bit is an interrupt enable (Interrupt on 
Async Advance bit in the USBINTR register) that is matched with the status bit. If the status bit is a one and 
the interrupt enable bit is a one, then the host controller will assert a hardware interrupt. 

Figure 4-10 illustrates a general example. In this example, consecutive queue heads (B and C) are unlinked 
from the schedule using the algorithm above. Before the unlink operation, the host controller has a copy of 
queue head A.  The unlink algorithm requires that as software unlinks each queue head, the unlinked queue 
head is loaded with the address of a queue head that will remain in the asynchronous schedule.  

When the host controller observes that doorbell bit being set to a one, it makes a note of the local reachable 
schedule information. In this example, the local reachable schedule information includes both queue heads 
(A & B). It is sufficient that the host controller can set the status bit (and clear the doorbell bit) as soon as it 
has traversed beyond current reachable schedule information (i.e. traversed beyond queue head (B) in this 
example). 
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Figure 4-10. Generic Queue Head Unlink Scenario 

Alternatively, a host controller implementation is allowed to traverse the entire asynchronous schedule list 
(e.g. observed the head of the queue (twice)) before setting the Advance on Async status bit to a one.  

Software may re-use the memory associated with the removed queue heads after it observes the Interrupt on 
Async Advance status bit is set to a one, following assertion of the doorbell. Software should acknowledge 
the Interrupt on Async Advance status as indicated in the USBSTS register, before using the doorbell 
handshake again. 
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4.8.3 Empty Asynchronous Schedule Detection 
The Enhanced Host Controller Interface uses two bits to detect when the asynchronous schedule is empty. 
The queue head data structure (see Figure 3-7) defines an H-bit in the queue head, which allows software to 
mark a queue head as being the head of the reclaim list. The Enhanced Host Controller Interface also keeps 
a 1-bit flag in the USBSTS register (Reclamation) that is set to a zero when the Enhanced Interface Host 
Controller observes a queue head with the H-bit set to a one. The reclamation flag in the status register is set 
to one when any USB transaction from the asynchronous schedule is executed (or whenever the 
asynchronous schedule starts, see Section 4.8.5).  

If the Enhanced Host Controller Interface ever encounters an H-bit of one and a Reclamation bit of zero, the 
EHCI controller simply stops traversal of the asynchronous schedule.  

An example illustrating the H-bit in a schedule is illustrated in Figure 4-11. 
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Figure 4-11. Asynchronous Schedule List w/Annotation to Mark Head of List 

Software must ensure there is at most one queue head with the H-bit set to a one, and that it is always 
coherent with respect to the schedule.  

4.8.4 Restarting Asynchronous Schedule Before EOF 
There are many situations where the host controller will detect an empty list long before the end of the 
micro-frame. It is important to remember that under many circumstances the schedule traversal has stopped 
due to Nak/Nyet responses from all endpoints.  

An example of particular interest is when a start-split for a bulk endpoint occurs early in the micro-frame. 
Given the EHCI simple traversal rules, the complete-split for that transaction may Nak/Nyet out very 
quickly. If it is the only item in the schedule, then the host controller will cease traversal of the 
Asynchronous schedule very early in the micro-frame. In order to provide reasonable service to this 
endpoint, the host controller should issue the complete-split before the end of the current micro-frame, 
instead of waiting until the next micro-frame. 

When the reason for host controller idling asynchronous schedule traversal is because of empty list 
detection, it is mandatory the host controller implement a 'waking' method to resume traversal of the 
asynchronous schedule. An example method is described below. 

4.8.4.1 Example Method for Restarting Asynchronous Schedule Traversal 
The reason for idling the host controller when the list is empty is to keep the host controller from 
unnecessarily occupying too much memory bandwidth. The question is: how long should the host controller 
stay idle before restarting?  
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The answer in this example is based on deriving a manifest constant, which is the amount of time the host 
controller will stay idle before restarting traversal. In this example, the manifest constant is called 
AsyncSchedSleepTime, and has a value of 10µsec. The value is derived based on the analysis in Section 
4.8.4.2. The traversal algorithm is simple:  

•  Traverse the Asynchronous schedule until the either an End-Of-micro-Frame event occurs, or an empty 
list is detected. If the event is an End-of-micro-Frame, go attempt to traverse the Periodic schedule. If 
the event is an empty list, then set a sleep timer and go to a schedule sleep state. 

•  When the sleep timer expires, set working context to the Asynchronous Schedule start condition and go 
to schedule active state. The start context allows the HC to reload Nakcnt fields, etc. so the HC has a 
chance to run for more than one iteration through the schedule.  

This process simply repeats itself each micro-frame. Figure 4-12 illustrates a sample state machine to 
manage the active and sleep states of the Asynchronous Schedule traversal policy. There are three states: 
Actively traversing the Asynchronous schedule, Sleeping, and Not Active. The last two are similar in terms 
of interaction with the Asynchronous schedule, but the Not Active state means that the host controller is 
busy with the Periodic schedule or the Asynchronous schedule is not enabled. The Sleeping state is 
specifically a special state where the host controller is just waiting for a period of time before resuming 
execution of the Asynchronous schedule. 

(Periodic Schedule Complete
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Figure 4-12. Example State Machine for Managing Asynchronous Schedule Traversal 

The actions referred to in Figure 4-12 are defined in Table 4–7.  

Table 4–7. Asynchronous Schedule SM Transition Actions 

Action 
Label 

Action Description 

A On detection of the empty list, the host controller sets the AsynchronousTraversalSleepTimer 
to AsyncSchedSleepTime. 

B When the AsynchronousTraversalSleepTimer expires, the host controller sets the 
Reclamation bit in the USBSTS register to a one and moves the Nak Counter reload state 
machine to WaitForListHead (see Section 4.9). 

C The host controller cancels the sleep timer (AsynchronousTraversalSleepTimer). 
 

4.8.4.1.1 Async Sched Not Active 
This is the initial state of the traversal state machine after a host controller reset. The traversal state machine 
will not leave this state when the Asynchronous Schedule Enable bit in the USBCMD register is a zero. 



EHCI Revision 1.0 3/12/2002 

76   USB 2.0 

This state is entered from Async Sched Active or Async Sched Sleeping states when the end-of-micro-
frame event is detected.  

4.8.4.1.2 Async Sched Active 
This state is entered from the Async Sched Not Active state when the periodic schedule is not active. It is 
also entered from the Async Sched Sleeping states when the AsyncrhonousTraversalSleepTimer expires. 

On every transition into this state, the host controller sets the Reclamation bit in the USBSTS register to a 
one.  

While in this state, the host controller will continually traverse the asynchronous schedule until either the 
end of micro-frame or an empty list condition is detected. 

4.8.4.1.3 Async Sched Sleeping 
The state is entered from the Async Sched Active state when a schedule empty condition is detected. On 
entry to this state, the host controller sets the AsynchronousTraversalSleepTimer to AsyncSchedSleepTime. 

4.8.4.2 Example Derivation for AsyncSchedSleepTime 
The derivation is based on analysis of what work the host controller could be doing next. It assumes the host 
controller does not keep any state about what work is possibly pending in the asynchronous schedule. The 
schedule could contain any mix of the possible combinations of high- full- or low-speed control and bulk 
requests. Table 4–8 summarizes some of the typical 'next transactions' that could be in the schedule, and the 
amount of time (e.g. footprint, or wall clock) the transaction will take to complete. 

Table 4–8. Typical Low-/Full-speed Transaction Times 

Transaction 
Attributes 

Footprint 
(time) 

Description 

Speed HS 

Size 512 

Type Bulk 

11.9 µs 
9.45 µs 

Maximum foot print for a worst-case, full-sized bulk data transaction. 
Maximum footprint for an approximate best-case, full-sized bulk data 
transaction. 

Speed FS 

Size 64 

Type Bulk 

~50 µs Approximate typical for full-sized bulk data. An 8-byte low-speed is 
about 2x, or between 90 and 100 µs. 

Speed FS 

Size 8 

Type Cntrl 

~12 µs Approximate typical for 8-byte bulk/control (i.e. setup) 

A AsyncSchedSleepTime value of 10 µs provides a reasonable relaxation of the system memory load and still 
provides a good level of service for the various transfer types and payload sizes. For example, say we detect 
an empty list after issuing a start-split for a 64-byte full-speed bulk request. Assuming this is the only thing 
in the list, the host controller will get the results of the full-speed transaction from the hub during the fifth 
complete-split request. If the full-speed transaction was an IN and it nak'd, the 10µs sleep period would 
allow the host controller to get the NAK results on the first complete-split. 

4.8.5 Asynchronous Schedule Traversal : Start Event 
Once the HC has idled itself via the empty schedule detection (Section 4.8.3), it will naturally activate and 
begin processing from the Periodic Schedule at the beginning of each micro-frame. In addition, it may have 
idled itself early in a micro-frame. When this occurs (idles early in the micro-frame) the HC must 
occasionally re-activate during the micro-frame and traverse the asynchronous schedule to determine 
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whether any progress can be made. The requirements and method for this restart are described in Section 
4.8.4. Asynchronous schedule Start Events are defined to be: 

•  Whenever the host controller transitions from the periodic schedule to the asynchronous schedule. 
If the periodic schedule is disabled and the asynchronous schedule is enabled, then the beginning of 
the micro-frame is equivalent to the transition from the periodic schedule, or 

•  The asynchronous schedule traversal restarts from a sleeping state (see Section 4.8.4). 

4.8.6 Reclamation Status Bit (USBSTS Register) 
The operation of the empty asynchronous schedule detection feature (Section 4.8.3) depends on the proper 
management of the Reclamation bit in the USBSTS register. The host controller tests for an empty schedule 
just after it fetches a new queue head while traversing the asynchronous schedule (See Section 4.10.1).  

It is required that the host controller sets the Reclamation bit to a one whenever an asynchronous schedule 
traversal Start Event, as documented in Section 4.8.5, occurs. The Reclamation bit is also set to a one 
whenever the host controller executes a transaction while traversing the asynchronous schedule (see Section 
4.10.3). 

The host controller sets the Reclamation bit to a zero whenever it finds a queue head with its H-bit set to a 
one. Software should only set a queue head's H-bit if the queue head is in the asynchronous schedule. If 
software sets the H-bit in an interrupt queue head to a one, the resulting behavior is undefined. The host 
controller may set the Reclamation bit to a zero when executing from the periodic schedule. 

4.9 Operational Model for Nak Counter  
This section describes the operational model for the NakCnt field defined in a queue head (see Section 3.6). 
Software should not use this feature for interrupt queue heads. This rule is not required to be enforced by the 
host controller.  

USB protocol has built-in flow control via the Nak response by a device. There are several scenarios, 
beyond the Ping feature, where an endpoint may naturally Nak or Nyet the majority of the time. An example 
is the host controller management of the split transaction protocol for control and bulk endpoints. All bulk 
endpoints (High- or Full-speed) are serviced via the same asynchronous schedule. The time between the 
Start-split transaction and the first Complete-split transaction could be very short (i.e. like when the endpoint 
is the only one in the asynchronous schedule). The hub NYETs (effectively Naks) the Complete-split 
transaction until the classic transaction is complete. This could result in the host controller thrashing 
memory, repeatedly fetching the queue head and executing the transaction to the Hub, which will not 
complete until after the transaction on the classic bus completes.  

There are two component fields in a queue head to support the throttling feature: a counter field (NakCnt), 
and a counter reload field (RL). NakCnt is used by the host controller as one of the criteria to determine 
whether or not to execute a transaction to the endpoint. There are two operational modes associated with this 
counter: 

•  Not Used. This mode is set when the RL field is zero. The host controller ignores the NakCnt field 
for any execution of transactions through a queue head with an RL field of zero. Software must use 
this selection for interrupt endpoints. 

•  Nak Throttle Mode. This mode is selected when the RL field is non-zero. In this mode, the value 
in the NakCnt field represents the maximum number of Nak or Nyet responses the host controller 
will tolerate on each endpoint. In this mode, the HC will decrement the NakCnt field based on the 
token/handshake criteria listed in Table 4–9. The host controller must reload NakCnt when the 
endpoint successfully moves data (e.g. policy to reward device for moving data).  
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Table 4–9. NakCnt Field Adjustment Rules 

Handshake Token 
NAK NYET 

IN/PING decrement NakCnt N/A (protocol error) 

OUT decrement NakCnt No Action1 

Start Split decrement NakCnt N/A (protocol error) 

Complete Split No Action Decrement NakCnt 
1 Recommended behavior on this response is to reload NakCnt. 

In summary, system software enables the counter by setting the reload field (RL) to a non-zero value. The 
host controller may execute a transaction if NakCnt is non-zero. The host controller will not execute a 
transaction if NakCnt is zero. 

The reload mechanism is described in detail in Section 4.9.1.  

Note that when all queue heads in the Asynchronous Schedule either exhausts all transfers or all NakCnt's 
go to zero, then the host controller will detect an empty Asynchronous Schedule and idle schedule traversal 
(see Section 4.8.3).  

Any time the host controller begins a new traversal of the Asynchronous Schedule, a Start Event is assumed, 
see Section 4.8.5. Every time a Start-Event occurs, the Nak Count reload procedure is enabled. 

4.9.1 Nak Count Reload Control 
When the host controller reaches the Execute Transaction state for a queue head (meaning that it has an 
active operational state), it checks to determine whether the NakCnt field should be reloaded from RL (see 
Section 4.10.3). If the answer is yes, then RL is copied into NakCnt. After the reload or if the reload is not 
active, the host controller evaluates whether to execute the transaction.  

The host controller must reload nak counters (NakCnt see Figure 3-7) in queue heads during the first pass 
through the reclamation list after an asynchronous schedule Start Event (see Section 4.8.5 for the definition 
of the Start Event). The Asynchronous Schedule should have at most one queue head marked as the head 
(see Figure 4-11). Figure 4-13 illustrates an example state machine that satisfies the operational 
requirements of the host controller detecting the first pass through the Asynchronous Schedule. This state 
machine is maintained internal to the host controller and is only used to gate reloading of the nak counter 
during the queue head traversal state: Execute Transaction (Figure 4-14). 

The host controller does not perform the nak counter reload operation if the RL field (see Figure 3-7) is set 
to zero. 
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Figure 4-13. Example HC State Machine for Controlling Nak Counter Reloads 



EHCI Revision 1.0 3/12/2002 

USB 2.0   79 

4.9.1.1 Wait for List Head 
This is the initial state. The state machine enters this state from Wait for Start Event when a start event as 
defined in Section 4.8.5 occurs. The purpose of this state is to wait for the first observation of the head of the 
Asynchronous Schedule. This occurs when the host controller fetches a queue head whose H-bit is set to a 
one. 

4.9.1.2 Do Reload 
This state is entered from the Wait for List Head state when the host controller fetches a queue head with 
the H-bit set to a one. While in this state, the host controller will perform nak counter reloads for every 
queue head visited that has a non-zero nak reload value (RL) field. 

4.9.1.3 Wait for Start Event 
This state is entered from the Do Reload state when a queue head with the H-bit set to a one is fetched. 
While in this state, the host controller will not perform nak counter reloads. 

4.10 Managing Control/Bulk/Interrupt Transfers via Queue Heads 
This section presents an overview of how the host controller interacts with queuing data structures.  

Queue heads use the Queue Element Transfer Descriptor (qTD) structure defined in Section 3.5. One queue 
head is used to manage the data stream for one endpoint. The queue head structure contains static endpoint 
characteristics and capabilities. It also contains a working area from where individual bus transactions for an 
endpoint are executed (see Overlay area defined in Figure 3-7). Each qTD represents one or more bus 
transactions, which is defined in the context of this specification as a transfer.  

The general processing model for the host controller's use of a queue head is simple:  

•  read a queue head,  

•  execute a transaction from the overlay area,  

•  write back the results of the transaction to the overlay area  

•  move to the next queue head.  

If the host controller encounters errors during a transaction, the host controller will set one (or more) of the 
error reporting bits in the queue head's Status field. The Status field accumulates all errors encountered 
during the execution of a qTD (e.g. the error bits in the queue head Status field are 'sticky' until the transfer 
(qTD) has completed). This state is always written back to the source qTD when the transfer is complete. 

On transfer (e.g. buffer or halt conditions) boundaries, the host controller must auto-advance (without 
software intervention) to the next qTD. Additionally, the hardware must be able to halt the queue so no 
additional bus transactions will occur for the endpoint and the host controller will not advance the queue. 

An example host controller operational state machine of a queue head traversal is illustrated in Figure 4-14. 
This state machine is a model for how a host controller should traverse a queue head. The host controller 
must be able to advance the queue from the Fetch QH state in order to avoid all hardware/software race 
conditions. This simple mechanism allows software to simply link qTDs to the queue head and activate 
them, then the host controller will always find them if/when they are reachable.  
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Figure 4-14. Host Controller Queue Head Traversal State Machine 

This traversal state machine applies to all queue heads, regardless of transfer type or whether split 
transactions are required. The following sections describe each state. Each state description describes the 
entry criteria. The Execute Transaction state (Section 4.10.3) describes the basic requirements for all 
endpoints. Sections 4.12.1 and 4.12.2 describe details of the required extensions to the Execute Transaction 
state for endpoints requiring split transactions.  

Note: Prior to software placing a queue head into either the periodic or asynchronous list, software must 
ensure the queue head is properly initialized. Minimally, the queue head should be initialized to the 
following (see Section 3.6 for layout of a queue head): 

•  Valid static endpoint state 

•  For the very first use of a queue head, software may zero-out the queue head transfer overlay, then set 
the Next qTD Pointer field value to reference a valid qTD. 

4.10.1 Fetch Queue Head 
A queue head can be referenced from the physical address stored in the ASYNCLISTADDR Register 
(Section 2.3.7). Additionally, it may be referenced from the Next Link Pointer field of an iTD, siTD, FSTN 
or another Queue Head. If the referencing link pointer has the Typ field set to indicate a queue head, it is 
assumed to reference a queue head structure as defined in Figure 3-7.  

While in this state, the host controller performs operations to implement empty schedule detection (Section 
4.8.3) and Nak Counter reloads (Section 4.9). 

After the queue head has been fetched, the host controller conducts the following queries for empty schedule 
detection: 

•  If queue head is not an interrupt queue head (i.e. S-mask is a zero), and 

•  The H-bit is a one, and 

•  The Reclamation bit in the USBSTS register is a zero.  
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When these criteria are met, the host controller will stop traversing the asynchronous list (as described in 
Section 4.8.3). When the criteria are not met, the host controller continues schedule traversal. 

If the queue head is not an interrupt and the H-bit is a one and the Reclamation bit is a one, then the host 
controller sets the Reclamation bit in the USBSTS register to a zero before completing this state. 

The operations for reloading of the Nak Counter are described in detail in Section 4.9.  

This state is complete when the queue head has been read on-chip.  

4.10.2 Advance Queue 
To advance the queue, the host controller must find the next qTD, adjust pointers, perform the overlay and 
write back the results to the queue head.  

This state is entered from the FetchQHD state if the overlay Active and Halt bits are set to zero. On entry to 
this state, the host controller determines which next pointer to use to fetch a qTD, fetches a qTD and 
determines whether or not to perform an overlay. Note that if the I-bit is a one and the Active bit is a zero, 
the host controller immediately skips processing of this queue head, exits this state and uses the horizontal 
pointer to the next schedule data structure. 

If the field Bytes to Transfer is not zero and the T-bit in the Alternate Next qTD Pointer is set to zero, then 
the host controller uses the Alternate Next qTD Pointer. Otherwise, the host controller uses the Next qTD 
Pointer. If Next qTD Pointer’s T-bit is set to a one, then the host controller exits this state and uses the 
horizontal pointer to the next schedule data structure.  

Using the selected pointer the host controller fetches the referenced qTD. If the fetched qTD has it’s Active 
bit set to a one, the host controller moves the pointer value used to reach the qTD (Next or Alternate Next) to 
the Current qTD Pointer field, then performs the overlay. If the fetched qTD has its Active bit set to a zero, 
the host controller aborts the queue advance and follows the queue head's horizontal pointer to the next 
schedule data structure. 

The host controller performs the overlay based on the following rules: 

•  The value of the data toggle (dt) field in the overlay area depends on the value of the data toggle 
control (dtc) bit (see Table 3-19).  

•  If the EPS field indicates the endpoint is a high-speed endpoint, the Ping state field is preserved by 
the host controller. The value of this field is not changed as a result of the overlay. 

•  C-prog-mask field is set to zero (field from incoming qTD is ignored, as is the current contents of 
the overlay area). 

•  Frame Tag field is set to zero (field from incoming qTD is ignored, as is the current contents of the 
overlay area). 

•  NakCnt field in the overlay area is loaded from the RL field in the queue head's Static Endpoint 
State. 

•  All other areas of the overlay are set by the incoming qTD. 

The host controller exits this state when it has committed the write to the queue head.  

4.10.3 Execute Transaction 
The host controller enters this state from the Fetch Queue Head state only if the Active bit in Status field of 
the queue head is set to a one.  

On entry to this state, the host controller executes a few pre-operations, then checks some pre-condition 
criteria before committing to executing a transaction for the queue head.  

The pre-operations performed and the pre-condition criteria depend on whether the queue head is an 
interrupt endpoint. The host controller can determine that a queue head is an interrupt queue head when the 
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queue head’s S-mask field contains a non-zero value. It is the responsibility of software to ensure the S-mask 
field is appropriately initialized based on the transfer type. There are other criteria that must be met if the 
EPS field indicates that the endpoint is a low- or full-speed endpoint, see Sections 4.12.1 and 4.12.2. 

•  Interrupt Transfer Pre-condition Criteria 

If the queue head is for an interrupt endpoint (e.g. non-zero S-mask field), then the FRINDEX[2:0] field 
must identify a bit in the S-mask field that has a one in it. For example, an S-mask value of 00100000b 
would evaluate to true only when FRINDEX[2:0] is equal to 101b. If this condition is met then the host 
controller considers this queue head for a transaction. 

•  Asynchronous Transfer Pre-operations and Pre-condition Criteria 

If the queue head is not for an interrupt endpoint (e.g. a zero S-mask field), then the host controller 
performs one pre-operation and then evaluates one pre-condition criteria: The pre-operation is: 

•  Checks the Nak counter reload state (Section 4.9). It may be necessary for the host controller to 
reload the Nak Counter field. The reload is performed at this time.  

The pre-condition evaluated is: 

•  Whether or not the NakCnt field has been reloaded, the host controller checks the value of the 
NakCnt field in the queue head. If NakCnt is non-zero, or if the Reload Nak Counter field is zero, 
then the host controller considers this queue head for a transaction.  

•  Transfer Type Independent Pre-operations  

Regardless of the transfer type, the host controller always performs at least one pre-operation and 
evaluates one pre-condition. The pre-operation is: 

•  A host controller internal transaction (down) counter qHTransactionCounter is loaded from the 
queue head’s Mult field. A host controller implementation is allowed to ignore this for queue heads 
on the asynchronous list. It is mandatory for interrupt queue heads. Software should ensure that the 
Mult field is set appropriately for the transfer type. 

The pre-conditions evaluated are: 

•  The host controller determines whether there is enough time in the micro-frame to complete this 
transaction (see Section 4.4.1.1 for an example evaluation method). If there is not enough time to 
complete the transaction, the host controller exits this state.  

•  If the value of qHTransactionCounter for an interrupt endpoint is zero, then the host controller 
exits this state. 

When the pre-operations are complete and pre-conditions are met, the host controller sets the Reclamation 
bit in the USBSTS register to a one and then begins executing one or more transactions using the endpoint 
information in the queue head. The host controller iterates qHTransactionCounter times in this state 
executing transactions. After each transaction is executed, qHTransactionCounter is decremented by one. 
The host controller will exit this state when one of the following events occurs: 

•  The qHTransactionCounter decrements to zero, or 

•  The endpoint responds to the transaction with any handshake other than an ACK,4 or 

•  The transaction experiences a transaction error, or 

•  The Active bit in the queue head goes to a zero, or 

•  There is not enough time in the micro-frame left to execute the next transaction (see Section 4.4.1.1 for 
example method for implementing the frame boundary test). 

                                                           
4 Note that for a high-bandwidth interrupt OUT endpoint, the host controller may optionally immediately retry 
the transaction if it fails. 
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The results of each transaction is recorded in the on-chip overlay area. If data was successfully moved 
during the transaction, the transfer state in the overlay area is advanced. To advance queue head’s transfer 
state, the Total Bytes to Transfer field is decremented by the number of bytes moved in the transaction, the 
data toggle bit (dt) is toggled, the current page offset is advanced to the next appropriate value (e.g. 
advanced by the number of bytes successfully moved), and the C_Page field is updated to the appropriate 
value (if necessary). See Section 4.10.6. 

Note that the Total Bytes To Transfer field may be zero when all the other criteria for executing a transaction 
are met. When this occurs, the host controller will execute a zero-length transaction to the endpoint. If the 
PID_Code field indicates an IN transaction and the device delivers data, the host controller will detect a 
packet babble condition, set the babble and halted bits in the Status field, set the Active bit to a zero, write 
back the results to the source qTD, then exit this state. 

In the event an IN token receives a data PID mismatch response, the host controller must ignore the received 
data (e.g. not advance the transfer state for the bytes received). Additionally, if the endpoint is an interrupt 
IN, then the host controller must record that the transaction occurred (e.g. decrement 
qHTransactionCounter). It is recommended (but not required) the host controller continue executing 
transactions for this endpoint if the resultant value of qHTransactionCounter is greater than one. 

If the response to the IN bus transaction is a Nak (or Nyet) and RL is non-zero, NakCnt is decremented by 
one. If RL is zero, then no write-back by the host controller is required (for a transaction receiving a Nak or 
Nyet response and the value of CErr did not change). Software should set the RL field to zero if the queue 
head is an interrupt endpoint. Host controller hardware is not required to enforce this rule or operation. 

After the transaction has finished and the host controller has completed the post processing of the results 
(advancing the transfer state and possibly NakCnt, the host controller writes back the results of the 
transaction to the queue head’s overlay area in main memory. 

The number of bytes moved during an IN transaction depends on how much data the device endpoint 
delivers. The maximum number of bytes a device can send is Maximum Packet Size. The number of bytes 
moved during an OUT transaction is either Maximum Packet Length bytes or Total Bytes to Transfer, 
whichever is less. 

If there was a transaction error during the transaction, the transfer state (as defined above) is not advanced 
by the host controller. The CErr field is decremented by one and the status field is updated to reflect the type 
of error observed. Transaction errors are summarized in Section 4.15.1.1. 

The following events will cause the host controller to clear the Active bit in the queue head’s overlay status 
field. When the Active bit transitions from a one to a zero, the transfer in the overlay is considered complete. 
The reason for the transfer completion (clearing the Active bit) determines the next state. 

•  CErr field decrements to zero. When this occurs the Halted bit is set to a one and Active is set to a zero. 
This results in the hardware not advancing the queue and the pipe halts. Software must intercede to 
recover. 

•  The device responds to the transaction with a STALL PID. When this occurs, the Halted bit is set to a 
one and the Active bit is set to a zero. This results in the hardware not advancing the queue and the pipe 
halts. Software must intercede to recover. 

•  The Total Bytes to Transfer field is zero after the transaction completes. Note that for a zero length 
transaction, it was zero before the transaction was started. When this condition occurs, the Active bit is 
set to zero.  

•  The PID code is an IN, and the number of bytes moved during the transaction is less than the Maximum 
Packet Length. When this occurs, the Active bit is set to zero and a short packet condition exists. The 
short-packet condition is detected during the Advance Queue state. Refer to Section 4.12 for additional 
rules for managing low- and full-speed transactions. 

•  The PID Code field indicates an IN and the device sends more than the expected number of bytes (e.g. 
Maximum Packet Length or Total Bytes to Transfer bytes, whichever is less) (e.g. a packet babble). This 
results in the host controller setting the Halted bit to a one. 
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With the exception of a NAK response (when RL field is zero), the host controller always writes the results 
of the transaction back to the overlay area in main memory. This includes when the transfer completes. For a 
high-speed endpoint, the queue head information written back includes minimally the following fields: 

•  NakCnt, dt, Total Bytes to Transfer, C_Page, Status, CERR, and Current Offset 

For a low- or full-speed device the queue head information written back also includes the fields: 

•  C-prog-mask, FrameTag and S-bytes. 

The duration of this state depends on the time it takes to complete the transaction(s) and the status write to 
the overlay is committed. 

4.10.3.1 Halting a Queue Head 
A halted endpoint is defined only for the transfer types that are managed via queue heads (control, bulk and 
interrupt). The following events indicate that the endpoint has reached a condition where no more activity 
can occur without intervention from the driver: 

•  An endpoint may return a STALL handshake during a transaction,  

•  A transaction had three consecutive error conditions, or  

•  A Packet Babble error occurs on the endpoint.  

When any of these events occur (for a queue head) the Host Controller halts the queue head and set the 
USBERRINT status bit in the USBSTS register to a one. To halt the queue head, the Active bit is set to a 
zero and the Halted bit is set to a one. There may be other error status bits that are set when a queue is 
halted. The host controller always writes back the overlay area to the source qTD when the transfer is 
complete, regardless of the reason (normal completion, short packet or halt). The host controller will not 
advance the transfer state on a transaction that results in a Halt condition (e.g. no updates necessary for Total 
Bytes to Transfer, C_Page, Current Offset, and dt). The host controller must update CErr as appropriate. 

When a queue head is halted, the USB Error Interrupt bit in the USBSTS register is set to a one. If the USB 
Error Interrupt Enable bit in the USBINTR register is set to a one, a hardware interrupt is generated at the 
next interrupt threshold. 

4.10.3.2 Asynchronous Schedule Park Mode 
Asynchronous Schedule Park mode is a special execution mode that can be enabled by system software, 
where the host controller is permitted to execute more than one bus transaction from a high-speed queue 
head in the Asynchronous schedule before continuing horizontal traversal of the Asynchronous schedule. 
This feature has no effect on queue heads or other data structures in the Periodic schedule. This feature is 
similar in intent as the Mult feature that is used in the Periodic schedule. Where-as the Mult feature is a 
characteristic that is tunable for each endpoint; park-mode is a policy that is applied to all high-speed queue 
heads in the asynchronous schedule. It is essentially the specification of an iterator for consecutive bus 
transactions to the same endpoint. All of the rules for managing bus transactions and the results of those as 
defined in Section 4.10.3 apply. This feature merely specifies how many consecutive times the host 
controller is permitted to execute from the same queue head before moving to the next queue head in the 
Asynchronous List. This feature should allow the host controller to attain better bus utilization for those 
devices that are capable of moving data at maximum rate, while at the same time providing a fair service to 
all endpoints. 

A host controller exports its capability to support this feature to system software by setting the 
Asynchronous Schedule Park Capability bit in the HCCPARAMs register to a one. This information keys 
system software that the Asynchronous Schedule Park Mode Enable and Asynchronous Schedule Park Mode 
Count fields in the USBCMD register are modifiable. System software enables the feature by writing a one 
to the Asynchronous Schedule Park Mode Enable bit.  
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When park-mode is not enabled (e.g. Asynchronous Schedule Park Mode Enable bit in the USBCMD 
register is a zero), the host controller must not execute more than one bus transaction per high-speed queue 
head, per traversal of the asynchronous schedule. 

When park-mode is enabled, the host controller must not apply the feature to a queue head whose EPS field 
indicates a Low/Full-speed device (i.e. only one bus transaction is allowed from each Low/Full-speed queue 
head per traversal of the asynchronous schedule). Park-mode may only be applied to queue heads in the 
Asynchronous schedule whose EPS field indicates that it is a high-speed device.  

The host controller must apply park mode to queue heads whose EPS field indicates a high-speed endpoint. 
The maximum number of consecutive bus transactions a host controller may execute on a high-speed queue 
head is determined by the value in the Asynchronous Schedule Park Mode Count field in the USBCMD 
register. Software must not set Asynchronous Schedule Park Mode Enable bit to a one and also set 
Asynchronous Schedule Park Mode Count field to a zero. The resulting behavior is not defined. An example 
behavioral example describes the operational requirements for the host controller implementing park-mode. 

This feature does not affect how the host controller handles the bus transaction as defined in Section 4.10.3. 
It only effects how many consecutive bus transactions for the current queue head can be executed. All 
boundary conditions, error detection and reporting applies as usual. This feature is similar in concept to the 
use of the Mult field for high-bandwidth Interrupt for queue heads in the Periodic Schedule.  

The host controller effectively loads an internal down-counter PM-Count from Asynchronous Schedule Park 
Mode Count when Asyncrhonous Schedule Park Mode Enable bit is a one, and a high-speed queue head is 
first fetched and meets all the criteria for executing a bus transaction. After the bus transaction, PM-Count is 
decremented. The host controller may continue to execute bus transactions from the current queue head until 
PM-Count goes to zero, an error is detected, the buffer for the current transfer is exhausted or the endpoint 
responds with a flow-control or STALL handshake. Table 4–10 summarizes the responses that effect 
whether the host controller continues with another bus transaction for the current queue head. 

Table 4–10. Actions for Park Mode, based on Endpoint Response and Residual Transfer State 

Transfer State after Transaction PID Endpoint 
Response 

PM-Count Bytes to Transfer 

Action 

Not zero Not Zero Allowed to perform another bus 
transaction.1, 2 

Not zero Zero Retire qTD and move to next QH  

DATA[0,1] 
w/Maximum 
Packet 
sized data 

Zero Don’t care Move to next QH. 

DATA[0,1] 
w/short 
packet 

Don’t care Don’t care Retire qTD and move to next 
QH.  

NAK Don’t care Don’t care Move to next QH.  

IN 

STALL, 
XactErr 

Don’t care Don’t care Move to next QH. 

Not zero Not Zero Allowed to perform another bus 
transaction. 2 

Not zero Zero Retire qTD and move to next QH 

ACK 

Zero Don’t’ care Move to next QH. 

NYET, 
NAK 

Don’t care Don’t care Move to next QH. 

OUT 

STALL, 
XactErr 

Don’t care Don’t care Move to next QH 
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Table 4–10. Actions for Park Mode, based on Endpoint Response and Residual Transfer State (cont.) 

Transfer State after Transaction Direction Endpoint 
Response 

PM-Count Bytes to Transfer 

Action 

ACK Not Zero Not Zero Allowed to perform another bus 
transaction. 2 

NAK Don’t care Don’t care Move to next QH 

PING 

STALL, 
XactErr 

Don’t care Don’t care Move to next QH 

1 Note, the host controller may continue to execute bus transactions from the current high-speed queue head (if PM-
Count is not equal to zero), if a PID mismatch is detected (e.g. expected DATA1 and received DATA0, or visa-versa). 

2 Note, this specification does not require that the host controller execute another bus transaction when PM-Count is 
non-zero. Implementations are encouraged to make appropriate complexity and performance trade-offs. 

4.10.4 Write Back qTD 
This state is entered from the Execute Transaction state when the Active bit is set to a zero. The source data 
for the write-back is the transfer results area of the queue head overlay area (see Figure 3-7). The host 
controller uses the Current qTD Pointer field as the target address for the qTD. The queue head transfer 
result area is written back to the transfer result area of the target qTD. This state is also referred to as: qTD 
retirement. The fields that must be written back to the source qTD include Total Bytes to Transfer, Cerr, and 
Status.  

The duration of this state depends on when the qTD write-back has been committed.  

4.10.5 Follow Queue Head Horizontal Pointer 
The host controller must use the horizontal pointer in the queue head to the next schedule data structure 
when any of the following conditions exist: 

•  If the Active bit is a one on exit from the Execute Transaction state, or 

•  When the host controller exits the Write Back qTD state, or  

•  If the Advance Queue state fails to advance the queue because the target qTD is not active, or 

•  If the Halted bit is a one on exit from the Fetch QH state. 

There is no functional requirement that the host controller wait until the current transaction is complete 
before using the horizontal pointer to read the next linked data structure. However, it must wait until the 
current transaction is complete before executing the next data structure. 

4.10.6 Buffer Pointer List Use for Data Streaming with qTDs 
A qTD has an  array of buffer pointers, which is used to reference the data buffer for a transfer. This 
specification requires that the buffer associated with the transfer be virtually contiguous. This means: if the 
buffer spans more than one physical page, it must obey the following rules (Figure 4-15 illustrates an 
example): 

•  The first portion of the buffer must begin at some offset in a page and extend through the end of the 
page. 

•  The remaining buffer cannot be allocated in small chunks scattered around memory. For each 4K 
chunk beyond the first page, each buffer portion matches to a full 4K page. The final portion, which 
may only be large enough to occupy a portion of a page, must start at the top of the page and be 
contiguous within that page. 
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The buffer pointer list in the qTD is long enough to support a maximum transfer size of 20K bytes. This case 
occurs when all five buffer pointers are used and the first offset is zero. A qTD handles a 16Kbyte buffer 
with any starting buffer alignment.  

The host controller uses the field C_Page field as an index value to determine which buffer pointer in the list 
should be used to start the current transaction. The host controller uses a different buffer pointer for each 
physical page of the buffer. This is always true, even if the buffer is physically contiguous.  

The host controller must detect when the current transaction will span a page boundary and automatically 
move to the next available buffer pointer in the page pointer list. The next available pointer is reached by 
incrementing C_Page and pulling the next page pointer from the list. Software must ensure there are 
sufficient buffer pointers to move the amount of data specified in the Bytes to Transfer field.  

Figure 4-15 illustrates a nominal example of how System software would initialize the buffer pointers list 
and the C_Page field for a transfer size of 16383 bytes. C_Page is set to zero. The upper 20-bits of Page 0 
references the start of the physical page. Current Offset (the lower 12-bits of queue head Dword 7) holds the 
offset in the page e.g. 2049 (e.g. 4096-2047). The remaining page pointers are set to reference the beginning 
of each subsequent 4K page.  

C_Page = 0

Pointer (page 0)

Pointer (page 1)

Pointer (page 2)

Pointer (page 3)

Pointer (page 4)

Bytes to Transfer = 16383 bytes

Page 0 = 2047
Page 1 = 4096
Page 2 = 4096
Page 3 = 4096
Page 4 = 2048

Total : 16383

4K

4K

4K

2047

2048

The physical pages in memory
may or may not be physically
contiguous.

 
Figure 4-15. Example Mapping of qTD Buffer Pointers to Buffer Pages 

For the first transaction on the qTD (assuming a 512-byte transaction), the host controller uses the first 
buffer pointer (page 0 because C_Page is set to zero) and concatenates the Current Offset field. The 512 
bytes are moved during the transaction, the Current Offset and Total Bytes to Transfer are adjusted by 512 
and written back to the queue head working area.  

During the 4th transaction, the host controller needs 511 bytes in page 0 and one byte in page 1. The host 
controller will increment C_Page (to 1) and use the page 1 pointer to move the final byte of the transaction. 
After the 4th transaction, the active page pointer is the page 1 pointer and Current Offset has rolled to one, 
and both are written back to the overlay area. The transactions continue for the rest of the buffer, with the 
host controller automatically moving to the next page pointer (i.e. C_Page) when necessary. 

There are three conditions for how the host controller handles C_Page.  

•  The current transaction does not span a page boundary. The value of C_Page is not adjusted by the host 
controller. 

•  The current transaction does span a page boundary. The host controller must detect the page cross 
condition and advance to the next buffer while streaming data to/from the USB. 
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•  The current transaction completes on a page boundary (i.e. the last byte moved for the current 
transaction is the last byte in the page for the current page pointer). The host controller must increment 
C_Page before writing back status for the transaction. 

Note that the only valid adjustment the host controller may make to C_Page is to increment by one. 

4.10.7 Adding Interrupt Queue Heads to the Periodic Schedule 
The link path(s) from the periodic frame list to a queue head establishes in which frames a transaction can be 
executed for the queue head. Queue heads are linked into the periodic schedule so they are polled at the 
appropriate rate. System software sets a bit in a queue head's S-Mask to indicate which micro-frame with-in 
a 1 millisecond period a transaction should be executed for the queue head. Software must ensure that all 
queue heads in the periodic schedule have S-Mask set to a non-zero value. An S-mask with a zero value in 
the context of the periodic schedule yields undefined results.  

If the desired poll rate is greater than one frame, system software can use a combination of queue head 
linking and S-Mask values to spread interrupts of equal poll rates through the schedule so that the periodic 
bandwidth is allocated and managed in the most efficient manner possible. Some examples are illustrated in 
Table 4–11. 

Table 4–11. Example Periodic Reference Patterns for Interrupt Transfers with 2ms Poll Rate 

Frame # Reference 
Sequence 

Description 

0, 2, 4, 6, 8, etc. 
S-Mask = 01h 

A queue head for the bInterval of 2 milliseconds (16 micro-frames) 
is linked into the periodic schedule so that it is reachable from the 
periodic frame list locations indicated in the previous column. In 
addition, the S-Mask field in the queue head is set to 01h, 
indicating that the transaction for the endpoint should be executed 
on the bus during micro-frame 0 of the frame.  

0, 2, 4, 6, 8, etc. 
S-Mask = 02h 

Another example of a queue head with a bInterval of 2 milliseconds 
is linked into the periodic frame list at exactly the same interval as 
the previous example. However, the S-Mask is set to 02h 
indicating that the transaction for the endpoint should be executed 
on the bus during micro-frame 1 of the frame. 

 

4.10.8 Managing Transfer Complete Interrupts from Queue Heads 
The host controller will set an interrupt to be signaled at the next interrupt threshold when the completed 
transfer (qTD) has an Interrupt on Complete (IOC) bit set to a one, or whenever a transfer (qTD) completes 
with a short packet. If system software needs multiple qTDs to complete a client request (i.e. like a control 
transfer) the intermediate qTDs do not require interrupts. System software may only need a single interrupt 
to notify it that the complete buffer has been transferred. System software may set IOC's to occur more 
frequently. A motivation for this may be that it wants early notification so that interface data structures can 
be re-used in a timely manner. 

4.11 Ping Control 
USB 2.0 defines an addition to the protocol for high-speed devices called Ping. Ping is required for all USB 
2.0 High-speed bulk and control endpoints. Ping is not allowed for a split-transaction stream. This extension 
to the protocol eliminates the bad side-effects of Naking OUT endpoints. The Status field has a Ping State 
bit, which the host controller uses to determine the next actual PID it will use in the next transaction to the 
endpoint (see Table 3-16). The Ping State bit is only managed by the host controller for queue heads that 
meet the following criteria: 

•  Queue head is not an interrupt and 
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•  EPS field equals High-Speed and 

•  PIDCode field equals OUT 

Table 4–12 illustrates the state transition table for the host controller's responsibility for maintaining the 
PING protocol. Refer to Chapter 8 in the USB Specification Revision 2.0 for detailed description on the 
Ping protocol.  

Table 4–12. Ping Control State Transition Table  

Event  Current  

Host Device 

Next  

Do Ping PING Nak Do Ping 

Do Ping PING Ack Do OUT 

Do Ping PING XactErr1 Do Ping 

Do Ping PING Stall N/C2 

Do OUT OUT Nak Do Ping 

Do OUT OUT Nyet Do Ping3 

Do OUT OUT Ack Do OUT 

Do OUT OUT XactErr1 Do Ping 

Do OUT OUT Stall N/C2 
1 Transaction Error (XactErr) is any time the host misses the handshake.  
2 No transition change required for the Ping State bit. The Stall handshake results in the endpoint being halted (e.g. 

Active set to zero and Halt set to a one). Software intervention is required to restart queue. 
3 A Nyet response to an OUT means that the device has accepted the data, but cannot receive any more at this time. Host 

must advance the transfer state and additionally, transition the Ping State bit to Do Ping. 

The Ping State bit has the following encoding: 

Value Meaning 
0B Do OUT The host controller will use an OUT PID during the next bus transaction to this 

endpoint. 
1B Do Ping The host controller will use a PING PID during the next bus transaction to this 

endpoint. 

The defined ping protocol (see USB 2.0 Specification, Chapter 8) allows the host to be imprecise on the 
initialization of the ping protocol (i.e. start in Do OUT when we don't know whether there is space on the 
device or not). 

The host controller manages the Ping State bit. System software sets the initial value in the queue head when 
it initializes a queue head. The host controller preserves the Ping State bit across all queue advancements. 
This means that when a new qTD is written into the queue head overlay area, the previous value of the Ping 
State bit is preserved.  

4.12 Split Transactions 
USB 2.0 defines extensions to the bus protocol for managing USB 1.x data streams through USB 2.0 Hubs. 
This section describes how the host controller uses the interface data structures to manage data streams with 
full- and low-speed devices, connected below USB 2.0 hub, utilizing the split transaction protocol. Refer to 
USB 2.0 Specification for the complete definition of the split transaction protocol. 

Full- and Low-speed devices are enumerated identically as high-speed devices, but the transactions to the 
Full- and Low-speed endpoints use the split-transaction protocol on the high-speed bus. The split transaction 
protocol is an encapsulation of (or wrapper around) the Full- or Low-speed transaction. The high-speed 
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wrapper portion of the protocol is addressed to the USB 2.0 Hub and Transaction Translator below which 
the Full- or Low-speed device is attached.  

The EHCI interface uses dedicated data structures for managing full-speed isochronous data streams (see 
Section 3.4). Control, Bulk and Interrupt are managed using the queuing data structures (see Sections 3.6). 
The interface data structures need to be programmed with the device address and the Transaction Translator 
number of the USB 2.0 Hub operating as the Low-/Full-speed host controller for this link. The following 
sections describe the details of how the host controller must process and manage the split transaction 
protocol.  

4.12.1 Split Transactions for Asynchronous Transfers 
A queue head in the asynchronous schedule with an EPS field indicating a full-or low-speed device indicates 
to the host controller that it must use split transactions to stream data for this queue head. All full-speed bulk 
and full-, low-speed control are managed via queue heads in the asynchronous schedule. 

Software must initialize the queue head with the appropriate device address and port number for the 
transaction translator that is serving as the full/low-speed host controller for the links connecting the 
endpoint. Software must also initialize the split transaction state bit (SplitXState) to Do-Start-Split. Finally, 
if the endpoint is a control endpoint, then system software must set the Control Transfer Type (C) bit in the 
queue head to a one. If this is not a control transfer type endpoint, the C bit must be initialized by software to 
be a zero. This information is used by the host controller to properly set the Endpoint Type (ET) field in the 
split transaction bus token. When the C bit is a zero, the split transaction token's ET field is set to indicate a 
bulk endpoint. When the C bit is a one, the split transaction token's ET field is set to indicate a control 
endpoint. Refer to Chapter 8 of USB Specification Revision 2.0 for details. 
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Figure 4-16. Host Controller Asynchronous Schedule Split-Transaction State Machine 

4.12.1.1 Asynchronous - Do Start Split  
This is the state which software must initialize a full- or low-speed asynchronous queue head. This state is 
entered from the Do Complete Split state only after a complete-split transaction receives a valid response 
from the transaction translator that is not a Nyet handshake.  

For queue heads in this state, the host controller will execute a start-split transaction to the appropriate 
transaction translator. If the bus transaction completes without an error and PidCode indicates an IN or OUT 
transaction, then the host controller will reload the error counter (CErr). If it is a successful bus transaction 
and the PidCode indicates a SETUP, the host controller will not reload the error counter. If the transaction 
translator responds with a Nak, the queue head is left in this state, and the host controller proceeds to the 
next queue head in the asynchronous schedule. 
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If the host controller times out the transaction (no response, or bad response) the host controller decrements 
Cerr and proceeds to the next queue head in the asynchronous schedule. 

4.12.1.2 Asynchronous - Do Complete Split 
This state is entered from the Do Start Split state only after a start-split transaction receives an Ack 
handshake from the transaction translator. 

For queue heads in this state, the host controller will execute a complete-split transaction to the appropriate 
transaction translator. If the transaction translator responds with a Nyet handshake, the queue head is left in 
this state, the error counter is reset and the host controller proceeds to the next queue head in the 
asynchronous schedule. When a Nyet handshake is received for a bus transaction where the queue head’s 
PidCode indicates an IN or OUT, the host controller will reload the error counter (CErr). When a Nyet 
handshake is received for a complete-split bus transaction where the queue head’s PidCode indicates a 
SETUP, the host controller must not adjust the value of CErr. 

Independent of PIDCode, the following responses have the effects: 

•  Transaction Error (XactErr). Timeout or data CRC failure, etc. The error counter (Cerr) is 
decremented by one and the complete split transaction is immediately retried (if possible). If there 
is not enough time in the micro-frame to execute the retry, the host controller MUST ensure that the 
next time the host controller begins executing from the Asynchronous schedule, it must begin 
executing from this queue head. If another start-split (for some other endpoint) is sent to the 
transaction translator before the complete-split is really completed, the transaction translator could 
dump the results (which were never delivered to the host). This is why the core specification states 
the retries must be immediate. A method to accomplish this behavior is to not advance the 
asynchronous schedule. When the host controller returns to the asynchronous schedule in the next 
micro-frame, the first transaction from the schedule will be the retry for this endpoint. If Cerr went 
to zero, the host controller must halt the queue. 

•  NAK. The target endpoint Nak'd the full- or low-speed transaction. The state of the transfer is not 
advanced and the state is exited. 

If the PidCode is a SETUP, then the Nak response is a protocol error. The XactErr status bit is set 
to a one and the CErr field is decremented. 

•  STALL. The target endpoint responded with a STALL handshake. The host controller sets the halt 
bit in the status byte, retires the qTD but does not attempt to advance the queue.  

If the PidCode indicates an IN, then any of following responses are expected: 

•  DATA0/1. On reception of data, the host controller ensures the PID matches the expected data 
toggle and checks CRC. If the packet is good, the host controller will advance the state of the 
transfer, e.g. move the data pointer by the number of bytes received, decrement BytesToTransfer 
field by the number of bytes received, and toggle the dt bit. The host controller will then exit this 
state. The response and advancement of transfer may trigger other processing events, such as 
retirement of the qTD and advancement of the queue.  

If the data sequence PID does not match the expected, the data is ignored, the transfer state is not 
advanced and this state is exited. 

If the PidCode indicates an OUT/SETUP, then any of following responses are expected: 

•  ACK. The target endpoint accepted the data, so the host controller must advance the state of the 
transfer. The Current Offset field is incremented by Maximum Packet Length or Bytes to Transfer, 
whichever is less. The field Bytes To Transfer is decremented by the same amount and the data 
toggle bit (dt) is toggled. The host controller will then exit this state.  

Advancing the transfer state may cause other processing events such as retirement of the qTD and 
advancement of the queue (see Section 4.10). 
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4.12.2 Split Transaction Interrupt 
Split-transaction Interrupt-IN/OUT endpoints are managed via the same data structures used for high-speed 
interrupt endpoints. They both co-exist in the periodic schedule. Queue heads/qTDs offer the set of features 
required for reliable data delivery, which is characteristic to interrupt transfer types. The split-transaction 
protocol is managed completely within this defined functional transfer framework. For example, for a high-
speed endpoint, the host controller will visit a queue head, execute a high-speed transaction (if criteria are 
met) and advance the transfer state (or not) depending on the results of the entire transaction. For low- and 
full-speed endpoints, the details of the execution phase are different (i.e. takes more than one bus transaction 
to complete), but the remainder of the operational framework is intact. This means that the transfer 
advancement, etc. occurs as defined in Section 4.10, but only occurs on the completion of a split transaction. 

4.12.2.1 Split Transaction Scheduling Mechanisms for Interrupt 
Full- and low-speed Interrupt queue heads have an EPS field indicating full- or low-speed and have a non-
zero S-mask field. The host controller can detect this combination of parameters and assume the endpoint is 
a periodic endpoint. Low- and full-speed interrupt queue heads require the use of the split transaction 
protocol. The host controller sets the Endpoint Type (ET) field in the split token to indicate the transaction is 
an interrupt. These transactions are managed through a transaction translator's periodic pipeline. Software 
should not set these fields to indicate the queue head is an interrupt unless the queue head is used in the 
periodic schedule. 

System software manages the per/transaction translator periodic pipeline by budgeting and scheduling 
exactly during which micro-frames the start-splits and complete-splits for each endpoint will occur. The 
characteristics of the transaction translator are such that the high-speed transaction protocol must execute 
during explicit micro-frames, or the data or response information in the pipeline is lost. Figure 4-17 
illustrates the general scheduling boundary conditions that are supported by the EHCI periodic schedule and 
queue head data structure. The S and CX labels indicate micro-frames where software can schedule start-
splits and complete splits (respectively).   

S C0 C1 C2

S C0 C1
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Figure 4-17. Split Transaction, Interrupt Scheduling Boundary Conditions  

The scheduling cases are: 
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•  Case 1: The normal scheduling case is where the entire split transaction is completely bounded by a 
frame (H-Frame in this case).  

•  Case 2a through Case 2c: The USB 2.0 Hub pipeline rules states clearly, when and how many complete-
splits must be scheduled to account for earliest to latest execution on the full/low-speed link. The 
complete-splits may span the H-Frame boundary when the start-split is in micro-frame 4 or later. When 
this occurs, the H-Frame to B-Frame alignment requires that the queue head be reachable from 
consecutive periodic frame list locations. System software cannot build an efficient schedule that 
satisfies this requirement unless it uses FSTNs. Figure 4-18 illustrates the general layout of the periodic 
schedule.  
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Figure 4-18. General Structure of EHCI Periodic Schedule Utilizing Interrupt Spreading 

The periodic frame list is effectively the leaf level a binary tree, which is always traversed leaf to root. 
Each level in the tree corresponds to a 2N poll rate. Software can efficiently manage periodic bandwidth 
on the USB by spreading interrupt queue heads that have the same poll rate requirement across all the 
available paths from the frame list. For example, system software can schedule eight poll rate 8 queue 
heads and account for them once in the high-speed bus bandwidth allocation.  

When an endpoint is allocated an execution footprint that spans a frame boundary, the queue head for 
the endpoint must be reachable from consecutive locations in the frame list. An example would be if 80b 
where such an endpoint. Without additional support on the interface, to get 80b reachable at the correct 
time, software would have to link 81 to 80b. It would then have to move 41 and everything linked after 
into the same path as 40. This upsets the integrity of the binary tree and disallows the use of the 
spreading technique.  

FSTN data structures are used to preserve the integrity of the binary-tree structure and enable the use of 
the spreading technique. Section 4.12.2.2 defines the hardware and software operational model 
requirements for using FSTNs. 

The following queue head fields are initialized by system software to instruct the host controller when to 
execute portions of the split-transaction protocol. 

•  SplitXState. This is a single bit residing in the Status field of a queue head (see Table 3-16). This bit is 
used to track the current state of the split transaction. 

•  µFrame S-mask. This is a bit-field where-in system software sets a bit corresponding to the micro-frame 
(within an H-Frame) that the host controller should execute a start-split transaction. This is always 
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qualified by the value of the SplitXState bit in the Status field of the queue head. For example, referring 
to Figure 4-17, case one, the S-mask would have a value of 00000001b indicating that if the queue head 
is traversed by the host controller, and the SplitXState indicates Do_Start, and the current micro-frame 
as indicated by FRINDEX[2:0] is 0, then execute a start-split transaction. 

•  µFrame C-mask. This is a bit-field where system software sets one or more bits corresponding to the 
micro-frames (within an H-Frame) that the host controller should execute complete-split transactions. 
The interpretation of this field is always qualified by the value of the SplitXState bit in the Status field 
of the queue head. For example, referring to Figure 4-17, case one, the C-mask would have a value of 
00011100b indicating that if the queue head is traversed by the host controller, and the SplitXState 
indicates Do_Complete, and the current micro-frame as indicated by FRINDEX[2:0] is 2, 3, or 4, then 
execute a complete-split transaction. 

It is software's responsibility to ensure that the translation between H-Frames and B-Frames is correctly 
performed when setting bits in S-mask and C-mask 

4.12.2.2 Host Controller Operational Model for FSTNs 
The FSTN data structure is used to manage Low/Full-speed interrupt queue heads that need to be reached 
from consecutive frame list locations (i.e. boundary cases 2a through 2c). An FSTN is essentially a back 
pointer, similar in intent to the back pointer field in the siTD data structure (see Section 3.4.5).  This feature 
provides software a simple primitive to save a schedule position, redirect the host controller to traverse the 
necessary queue heads in the previous frame, then restore the original schedule position and complete 
normal traversal.  

There are four components to the use of FSTNs: 

1. FSTN data structure, defined in Section 3.7. 

2. A Save Place indicator. This is always an FSTN with its Back Path Link Pointer. T-bit set to zero.  

3. A Restore indicator. This is always an FSTN with its Back Path Link Pointer.T-bit set to a one.  

4. Host controller FSTN traversal rules. 

4.12.2.2.1 Host Controller Operational Model for FSTNs  
When the host controller encounters an FSTN during micro-frames 2 through 7 it simply follows the node’s 
Normal Path Link Pointer to access the next schedule data structure. Note that the FSTN’s Normal Path 
Link Pointer.T-bit may set to a one, which the host controller must interpret as the end of periodic list mark.  

When the host controller encounters a Save-Place FSTN in micro-frames 0 or 1, it will save the value of the 
Normal Path Link Pointer and set an internal flag indicating that it is executing in Recovery Path mode. 
Recovery Path mode modifies the host controller’s rules for how it traverses the schedule and limits which 
data structures will be considered for execution of bus transactions. The host controller continues executing 
in Recovery Path mode until it encounters a Restore FSTN or it determines that it has reached the end of the 
micro-frame (see details in the list below).  The rules for schedule traversal and limited execution while in 
Recovery Path mode are: 

•  Always follow the Normal Path Link Pointer when it encounters an FSTN that is a Save-Place 
indicator. The host controller must not recursively follow Save-Place FSTNs. Therefore, while 
executing in Recovery Path mode, it must never follow an FSTN’s Back Path Link Pointer.  

•  Do not process an siTD or, iTD data structure. Simply follow its Next Link Pointer.  

•  Do not process a QH (Queue Head) whose EPS field indicates a high-speed device. Simply follow 
its Horizontal Link Pointer. 

•  When a QH’s EPS field indicates a Full/Low-speed device, the host controller will only consider it 
for execution if its SplitXState is DoComplete (note: this applies whether the PID Code indicates 
an IN or an OUT). See Sections 4.10.3 and 4.12.2.3 for a complete list of additional conditions that 
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must be met in general for the host controller to issue a bus transaction. Note that the host controller 
must not execute a Start-split transaction while executing in Recovery Path mode. See Section 
4.12.2.4.2 for special handling when in Recovery Path mode.  

•  Stop traversing the recovery path when it encounters an FSTN that is a Restore indicator. The host 
controller unconditionally uses the saved value of the Save-Place FSTN’s Normal Path Link 
Pointer when returning to the normal path traversal. The host controller must clear the context of 
executing a Recovery Path when it restores schedule traversal to the Save-Place FSTN’s Normal 
Path Link Pointer.  

If the host controller determines that there is not enough time left in the micro-frame to complete 
processing of the periodic schedule, it abandons traversal of the recovery path, and clears the 
context of executing a recovery path. The result is that at the start of the next consecutive micro-
frame, the host controller starts traversal at the frame list. 

An example traversal of a periodic schedule that includes FSTNs is illustrated in Figure 4-19.  
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Figure 4-19. Example Host Controller Traversal of Recovery Path via FSTNs 

In frame N (micro-frames 0-7), for this example, the host controller will traverse all of the schedule data 
structures utilizing the Normal Path Link Pointers in any FSTNs it encounters. This is because the host 
controller has not yet encountered a Save-Place FSTN so it not executing in Recovery Path mode. When it 
encounters the Restore FSTN, (Restore-N), during micro-frames 0 and 1, it uses Restore-N.Normal Path 
Link Pointer to traverse to the next data structure (i.e. normal schedule traversal). This is because the host 
controller must use a Restore FSTN’s Normal Path Link Pointer when not executing in a Recovery-Path 
mode. The nodes traversed during frame N include: {82.0, 82.1, 82.2, 82.3, 42, 20, Restore-N, 10 …}.  

In frame N+1 (micro-frames 0 and 1), when the host controller encounters Save-Path FSTN (Save-N), it 
observes that Save-N.Back Path Link Pointer.T-bit  is zero (definition of a Save-Path indicator). The host 
controller saves the value of Save-N.Normal Path Link Pointer and follows Save-N.Back Path Link Pointer. 
At the same time, it sets an internal flag indicating that it is now in Recovery Path mode (the recovery path 
is annotated in Figure 4-19 with a large dashed line). The host controller continues traversing data structures 
on the recovery path and executing only those bus transactions as noted above, on the recovery path until it 
reaches Restore FSTN (Restore-N). Restore-N.Back Path Link Pointer.T-bit is set to a one (definition of a 
Restore indicator), so the host controller exits Recovery Path mode by clearing the internal Recovery Path 
mode flag and commences (restores) schedule traversal using the saved value of the Save-Place FSTN’s 
Normal Path Link Pointer (e.g. Save-N.Normal Path Link Pointer). The nodes traversed during these micro-
frames include: {83.0, 83.1, 83.2, Save-A, 82.2, 82.3, 42, 20, Restore-N, 43, 21, Restore-N, 10 …}. The nodes on 
the recovery-path are bolded.  
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In frame N+1 (micro-frames 2-7), when the host controller encounters Save-Path FSTN Save-N, it will 
unconditionally follow Save-N.Normal Path Link Pointer. The nodes traversed during these micro-frames 
include: {83.0, 83.1, 83.2, Save-A, 43, 21, Restore-N, 10 …}. 

4.12.2.2.2 Software Operational Model for FSTNs  
Software must create a consistent, coherent schedule for the host controller to traverse. When using FSTNs, 
system software must adhere to the following rules: 

•  Each Save-Place indicator requires a matching Restore indicator.  

The Save-Place indicator is an FSTN with a valid Back Path Link Pointer and T-bit equal to zero. 
Note that Back Path Link Pointer.Typ field must be set to indicate the referenced data structure is a 
queue head. The Restore indicator is an FSTN with its Back Path Link Pointer.T-bit set to a one.   

A Restore FSTN may be matched to one or more Save-Place FSTNs. For example, if the schedule 
includes a poll-rate 1 level, then system software only needs to place a Restore FSTN at the 
beginning of this list in order to match all possible Save-Place FSTNs.  

•  If the schedule does not have elements linked at a poll-rate level of one, and one or more Save-
Place FSTNs are used, then System Software must ensure the Restore FSTN’s Normal Path Link 
Pointer’s T-bit is set to a one, as this will be use to mark the end of the periodic list. 

•  When the schedule does have elements linked at a poll rate level of one, a Restore FSTN must be 
the first data structure on the poll rate one list. All traversal paths from the frame list converge on 
the poll-rate one list. System software must ensure that Recovery Path mode is exited before the 
host controller is allowed to traverse the poll rate level one list. 

•  A Save-Place FSTN’s Back Path Link Pointer must reference a queue head data structure. The 
referenced queue head must be reachable from the previous frame list location. In other words, if 
the Save-Place FSTN is reachable from frame list offset N, then the FSTN’s Back Path Link 
Pointer must reference a queue head that is reachable from frame list offset N-1.  

Software should make the schedule as efficient as possible. What this means in this context is that software 
should have no more than one Save-Place FSTN reachable in any single frame. Note there will be times 
when two (or more, depending on the implementation) could exist as full/low-speed footprints change with 
bandwidth adjustments. This could occur, for example when a bandwidth rebalance causes system software 
to move the Save-Place FSTN from one poll rate level to another. During the transition, software must 
preserve the integrity of the previous schedule until the new schedule is in place. 

4.12.2.3 Tracking Split Transaction Progress for Interrupt Transfers 
To correctly maintain the data stream, the host controller must be able to detect and report errors where data 
is lost. For interrupt-IN transfers, data is lost when it makes it into the USB 2.0 hub, but the USB 2.0 host 
system is unable to get it from the USB 2.0 Hub and into the system before it expires from the transaction 
translator pipeline. When a lost data condition is detected, the queue must be halted, thus signaling system 
software to recover from the error. A data-loss condition exists whenever a start-split is issued, accepted and 
successfully executed by the USB 2.0 Hub, but the complete-splits get unrecoverable errors on the high-
speed link, or the complete-splits do not occur at the correct times. One reason complete-splits might not 
occur at the right time would be due to host-induced system hold-offs that cause the host controller to miss 
bus transactions because it cannot get timely access to the schedule in system memory.  

The same condition can occur for an interrupt-OUT, but the result is not an endpoint halt condition, but 
rather effects only the progress of the transfer. 

The queue head has the following fields to track the progress of each split transaction. These fields are used 
to keep incremental state about which (and when) portions have been executed.  

•  C-prog-mask. This is an eight-bit bit-vector where the host controller keeps track of which complete-
splits have been executed. Due to the nature of the Transaction Translator periodic pipeline, the 
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complete-splits need to be executed in-order. The host controller needs to detect when the complete-
splits have not been executed in order. This can only occur due to system hold-offs where the host 
controller cannot get to the memory-based schedule. C-prog-mask is a simple bit-vector that the host 
controller sets one of the C-prog-mask bits for each complete-split executed. The bit position is 
determined by the micro-frame number in which the complete-split was executed. The host controller 
always checks C-prog-mask before executing a complete-split transaction. If the previous complete-
splits have not been executed then it means one (or more) have been skipped and data has potentially 
been lost.  

•  FrameTag. This field is used by the host controller during the complete-split portion of the split 
transaction to tag the queue head with the frame number (H-Frame number) when the next complete 
split must be executed.  

•  S-bytes. This field can be used to store the number of data payload bytes sent during the start-split (if the 
transaction was an OUT). The S-bytes field must be used to accumulate the data payload bytes received 
during the complete-splits (for an IN).  

4.12.2.4 Split Transaction Execution State Machine for Interrupt 
In the following presentation, all references to micro-frame are in the context of a micro-frame within an H-
Frame.  

As with asynchronous Full- and Low-speed endpoints, a split-transaction state machine is used to manage 
the split transaction sequence. Aside from the fields defined in the queue head for scheduling and tracking 
the split transaction, the host controller calculates one internal mechanism that is also used to manage the 
split transaction. The internal calculated mechanism is: 

•  cMicroFrameBit. This is a single-bit encoding of the current micro-frame number. It is an eight-bit 
value calculated by the host controller at the beginning of every micro-frame. It is calculated from the 
three least significant bits of the FRINDEX register (i.e. cMicroFrameBit = (1 shifted-
left(FRINDEX[2:0]))). The cMicroFrameBit has at most one bit asserted, which always corresponds to 
the current micro-frame number. For example, if the current micro-frame is 0, then cMicroFrameBit 
will equal 00000001b.  

The variable cMicroFrameBit is used to compare against the S-mask and C-mask fields to determine 
whether the queue head is marked for a start- or complete-splt transaction for the current micro-frame. 

Figure 4-20 illustrates the state machine for managing a complete interrupt split transaction. There are two 
phases to each split transaction. The first is a single start-split transaction, which occurs when the SplitXState 
is at Do_Start and the single bit in cMicroFrameBit has a corresponding bit active in QH.S-mask. The 
transaction translator does not acknowledge the receipt of the periodic start-split, so the host controller 
unconditionally transitions the state to Do_Complete. Due to the available jitter in the transaction translator 
pipeline, there will be more than one complete-split transaction scheduled by software for the Do_Complete 
state. This translates simply to the fact that there are multiple bits set to a one in the QH.C-mask field. 

The host controller keeps the queue head in the Do_Complete state until the split transaction is complete 
(see definition below), or an error condition triggers the three-strikes-rule (e.g. after the host tries the same 
transaction three times, and each encounters an error, the host controller will stop retrying the bus 
transaction and halt the endpoint, thus requiring system software to detect the condition and perform system-
dependent recovery).  
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Figure 4-20. Split Transaction State Machine for Interrupt 

**See Section 4.12.2.4.3 for the frame tag management rules. 

4.12.2.4.1 Periodic Interrupt - Do Start Split 
This is the state software must initialize a full- or low-speed interrupt queue head StartXState bit. This state 
is entered from the Do_Complete Split state only after the split transaction is complete. This occurs when 
one of the following events occur: 

The transaction translator responds to a complete-split transaction with one of the following: 

•  NAK. A NAK response is a propagation of the full- or low-speed endpoint's NAK response.  

•  ACK. An ACK response is a propagation of the full- or low-speed endpoint's ACK response. Only 
occurs on an OUT endpoint. 

•  DATA 0/1. Only occurs for INs. Indicates that this is the last of the data from the endpoint for this 
split transaction. 

•  ERR. The transaction on the low-/full-speed link below the transaction translator had a failure (e.g. 
timeout, bad CRC, etc.). 

•  NYET (and Last). The host controller issued the last complete-split and the transaction translator 
responded with a NYET handshake. This means that the start-split was not correctly received by 
the transaction translator, so it never executed a transaction to the full- or low-speed endpoint, see 
Section 4.12.2.4.2 for the definition of ‘Last’. 

Each time the host controller visits a queue head in this state (once within the Execute Transaction state), it 
performs the following test to determine whether to execute a start-split. 

•  QH.S-mask is bit-wise anded with cMicroFrameBit.  

If the result is non-zero, then the host controller will issue a start-split transaction. If the PIDCode field 
indicates an IN transaction, the host controller must zero-out the QH.S-bytes field. After the split-transaction 
has been executed, the host controller sets up state in the queue head to track the progress of the complete-
split phase of the split transaction. Specifically, it records the expected frame number into QH.FrameTag 
field (see Section 4.12.2.4.3), set C-prog-mask to zero (00h), and exits this state. Note that the host 
controller must not adjust the value of CErr as a result of completion of a start-split transaction. 
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4.12.2.4.2 Periodic Interrupt - Do Complete Split 
This state is entered unconditionally from the Do Start Split state after a start-split transaction is executed 
on the bus. Each time the host controller visits a queue head in this state (once within the Execute 
Transaction state), it checks to determine whether a complete-split transaction should be executed now.  

There are four tests to determine whether a complete-split transaction should be executed.  

•  Test A. cMicroFrameBit is bit-wise anded with QH.C-mask field. A non-zero result indicates that 
software scheduled a complete-split for this endpoint, during this micro-frame. 

•  Test B. QH.FrameTag is compared with the current contents of FRINDEX[7:3]. An equal indicates a 
match. 

•  Test C. The complete-split progress bit vector is checked to determine whether the previous bit is set, 
indicating that the previous complete-split was appropriately executed. An example algorithm for this 
test is provided below: 

 
Algorithm Boolean CheckPreviousBit(QH.C-prog-mask, QH.C-mask, cMicroFrameBit)
Begin
-- Return values:
-- TRUE - no error
-- FALSE - error
--

Boolean rvalue = TRUE;

previousBit = cMicroframeBit logical-rotate-right(1)

-- Bit-wise anding previousBit with C-mask indicates whether there was an intent
-- to send a complete split in the previous micro-frame. So, if the
-- 'previous bit' is set in C-mask, check C-prog-mask to make sure it
-- happened.

If (previousBit bitAND QH.C-mask)then
If not(previousBit bitAND QH.C-prog-mask) then

rvalue = FALSE;
End if

End If

-- If the C-prog-mask already has a one in this bit position, then an aliasing
-- error has occurred. It will probably get caught by the FrameTag Test, but
-- at any rate it is an error condition that as detectable here should not allow
-- a transaction to be executed.

If (cMicroFrameBit bitAND QH.C-prog-mask) then
rvalue = FALSE;

End if
return (rvalue)

End Algorithm

•  Test D. Check to see if a start-split should be executed in this micro-frame. Note this is the same test 
performed in the Do Start Split state (see Section 4.12.2.4.1). Whenever it evaluates to TRUE and the 
controller is NOT processing in the context of a Recovery Path mode, it means a start-split should occur 
in this micro-frame. Test D and Test A evaluating to TRUE at the same time is a system software error. 
Behavior is undefined.  

If (A .and. B .and. C .and. not(D)) then the host controller will execute a complete-split transaction. When 
the host controller commits to executing the complete-split transaction, it updates QH.C-prog-mask by bit-
ORing with cMicroFrameBit. On completion of the complete-split transaction, the host controller records 
the result of the transaction in the queue head and sets QH.FrameTag to the expected H-Frame number (see 
Section 4.12.2.4.3). The effect to the state of the queue head and thus the state of the transfer depends on the 
response by the transaction translator to the complete-split transaction. The following responses have the 
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effects (note that any responses that result in decrementing of the CErr will result in the queue head being 
halted by the host controller if the result of the decrement is zero): 

•  NYET (and Last). On each NYET response, the host controller checks to determine whether this is 
the last complete-split for this split transaction. Last is defined in this context as the condition 
where all of the scheduled complete-splits have been executed. If it is the last complete-split (with a 
NYET response), then the transfer state of the queue head is not advanced (never received any data) 
and this state exited. The transaction translator must have responded to all the clompete-splits with 
NYETs, meaning that the start-split issued by the host controller was not received. The start-split 
should be retried at the next poll period.  

The test for whether this is the Last complete split can be performed by XOR QH.C-mask with 
QH.C-prog-mask. If the result is all zeros then all complete-splits have been executed. When this 
condition occurs, the XactErr status bit is set to a one and the CErr field is decremented.  

•  NYET (and not Last). See above description for testing for Last. The complete-split transaction 
received a NYET response from the transaction translator. Do not update any transfer state (except 
for C-prog-mask and FrameTag) and stay in this state. The host controller must not adjust CErr on 
this response. 

•  Transaction Error (XactErr). Timeout, data CRC failure, etc. The CErr field is decremented and the 
XactErr bit in the Status field is set to a one. The complete split transaction is immediately retried 
(if Cerr is non-zero).  If there is not enough time in the micro-frame to complete the retry and the 
endpoint is an IN, or CErr is decremented to a zero from a one, the queue is halted. If there is not 
enough time in the micro-frame to complete the retry and the endpoint is an OUT and CErr is not 
zero, then this state is exited (i.e. return to Do Start Split). This results in a retry of the entire OUT 
split transaction, at the next poll period. Refer to Chapter 11 Hubs (specifically the section full- and 
low-speed Interrupts) in the USB Specification Revision 2.0 for detailed requirements on why these 
errors must be immediately retried.  

•  ACK. This can only occur if the target endpoint is an OUT. The target endpoint ACK'd the data and 
this response is a propagation of the endpoint ACK up to the host controller. The host controller 
must advance the state of the transfer. The Current Offset field is incremented by Maximum Packet 
Length or Bytes to Transfer, whichever is less. The field Bytes To Transfer is decremented by the 
same amount. And the data toggle bit (dt) is toggled. The host controller will then exit this state for 
this queue head. The host controller must reload CErr with maximum value on this response. 

Advancing the transfer state may cause other process events such as retirement of the qTD and 
advancement of the queue (see Section 4.10). 

•  MDATA. This response will only occur for an IN endpoint. The transaction translator responded 
with zero or more bytes of data and an MDATA PID. The incremental number of bytes received is 
accumulated in QH.S-bytes. The host controller must not adjust CErr on this response. 

•  DATA0/1. This response may only occur for an IN endpoint. The number of bytes received is 
added to the accumulated byte count in QH.S-bytes. The state of the transfer is advanced by the 
result and the host controller will exit this state for this queue head. 

Advancing the transfer state may cause other processing events such as retirement of the qTD and 
advancement of the queue (see Section 4.10).  

If the data sequence PID does not match the expected, the entirety of the data received in this split 
transaction is ignored, the transfer state is not advanced and this state is exited. 

•  NAK. The target endpoint Nak'd the full- or low-speed transaction. The state of the transfer is not 
advanced, and this state is exited. The host controller must reload CErr with maximum value on 
this response. 

•  ERR. There was an error during the full- or low-speed transaction. The ERR status bit is set to a 
one, Cerr is decremented, the state of the transfer is not advanced, and this state is exited.  
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•  STALL. The queue is halted (an exit condition of the Execute Transaction state). The status field 
bits: Active bit is set to zero and the Halted bit is set to a one and the qTD is retired. 

Responses which are not enumerated in the list or which are received out of sequence are illegal and may 
result in undefined host controller behavior. 

The other possible combinations of tests A, B, C, and D may indicate that data or response was lost. Table 
4–13 lists the possible combinations and the appropriate action. 

Table 4–13. Interrupt IN/OUT Do Complete Split State Execution Criteria 

Condition Action Description 

not(A) 
not(D) 

Ignore QHD  Neither a start nor complete-split is scheduled for the current micro-
frame. Host controller should continue walking the schedule. 

A 
not(C) 

If PIDCode = IN 
Halt QHD 
 

If PIDCode = OUT 
Retry start-split 

Progress bit check failed. These means a complete-split has been 
missed. There is the possibility of lost data. If PIDCode is an IN, then 
the Queue head must be halted.  
If PIDCode is an OUT, then the transfer state is not advanced and the 
state exited (e.g. start-split is retried). This is a host-induced error and 
does not effect CERR.  
In either case, set the Missed Micro-frame bit in the status field to a 
one. 

A  
not(B) 
C  

If PIDCode = IN 
Halt QHD 
 
 

If PIDCode = OUT 
Retry start-split 

QH.FrameTag test failed. This means that exactly one or more H-
Frames have been skipped. This means complete-splits and have 
missed. There is the possibility of lost data. If PIDCode is an IN, then 
the Queue head must be halted.  
If PIDCode is an OUT, then the transfer state is not advanced and the 
state exited (e.g. start-split is retried). This is a host-induced error and 
does not effect CERR. 
In either case, set the Missed Micro-frame bit in the status field to a 
one. 

A 
B 
C 
not(D) 

Execute 
complete-split 

This is the non-error case where the host controller executes a 
complete-split transaction. 

D If PIDCode = IN 
Halt QHD 
 
 

If PIDCode = OUT 
Retry start-split 

This is a degenerate case where the start-split was issued, but all of 
the complete-splits were skipped and all possible intervening 
opportunities to detect the missed data failed to fire. If PIDCode is an 
IN, then the Queue head must be halted.  
If PIDCode is an OUT, then the transfer state is not advanced and the 
state exited (e.g. start-split is retried). This is a host-induced error and 
does not effect CERR. 
In either case, set the Missed Micro-frame bit in the status field to a 
one. 
Note: When executing in the context of a Recovery Path mode, the 
host controller is allowed to process the queue head and take the 
actions indicated above, or it may wait until the queue head is visited 
in the normal processing mode. Regardless, the host controller must 
not execute a start-split in the context of a executing in a Recovery 
Path mode. 
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4.12.2.4.3 Managing QH.FrameTag Field 
The QH.FrameTag field in a queue head is completely managed by the host controller. The rules for setting 
QH.FrameTag are simple: 

•  Rule 1: If transitioning from Do Start Split to Do Complete Split and the current value of 
FRINDEX[2:0] is 6 QH.FrameTag is set to FRINDEX[7:3] + 1. This accommodates split 
transactions whose start-split and complete-splits are in different H-Frames (case 2a, see Figure 
4-17).  

•  Rule 2: If the current value of FRINDEX[2:0] is 7, QH.FrameTag is set to FRINDEX[7:3] + 1. This 
accommodates staying in Do Complete Split for cases 2a, 2b, and 2c (Figure 4-17). 

•  Rule 3: If transitioning from Do_Start Split to Do Complete Split and the current value of 
FRINDEX[2:0] is not 6, or currently in Do Complete Split and the current value of 
(FRINDEX[2:0]) is not 7, FrameTag is set to FRINDEX[7:3]. This accommodates all other cases 
(Figure 4-17). 

4.12.2.5 Rebalancing the Periodic Schedule 
System software must occasionally adjust a periodic queue head’s S-mask and C-mask fields during 
operation. This need occurs when adjustments to the periodic schedule create a new bandwidth budget and 
one or more queue head’s are assigned new execution footprints (i.e. new S-mask and C-mask values).  It is 
imperative that System software must not update these masks to new values in the midst of a split 
transaction. In order to avoid any race conditions with the update, the EHCI host controller provides a 
simple assist to system software. 

System software sets the Inactivate-on-next-Transaction (I) bit to a one to signal the host controller that it 
intends to update the S-mask and C-mask on this queue head. System software will then wait for the host 
controller to observe the I-bit is a one and transition the Active bit to a zero. The rules for how and when the 
host controller sets the Active bit to zero are enumerated below: 

•  If the Active bit is a zero, no action is taken. The host controller does not attempt to advance the 
queue when the I-bit is a one. 

•  If the Active bit is a one and the SplitXState is DoStart (regardless of the value of S-mask), the host 
controller will simply set Active bit to a zero. The host controller is not required to write the transfer 
state back to the current qTD. Note that if the S-mask indicates that a start-split is scheduled for the 
current micro-frame, the host controller must not issue the start-split bus transaction. It must set the 
Active bit to zero. 

System software must save transfer state before setting the I-bit to a one. This is required so that it can 
correctly determine what transfer progress (if any) occurred after the I-bit was set to a one and the host 
controller executed it’s final bus-transaction and set Active to a zero. 

After system software has updated the S-mask and C-mask, it must then reactivate the queue head. Since the 
Active bit and the I-bit cannot be updated with the same write, system software needs to use the following 
algorithm to coherently re-activate a queue head that has been stopped via the I-bit.  

1. Set the Halted bit to a one, then 

2. Set the I-bit to a zero, then 

3. Set the Active bit to a one and the Halted bit to a zero in the same write. 

Setting the Halted bit to a one inhibits the host controller from attempting to advance the queue between the 
time the I-bit goes to a zero and the Active bit goes to a one. 



EHCI Revision 1.0 3/12/2002 

USB 2.0   103 

4.12.3 Split Transaction Isochronous 
Full-speed isochronous transfers are managed using the split-transaction protocol through a USB 2.0 
transaction translator in a USB2.0 Hub. The EHCI controller utilizes siTD data structure to support the 
special requirements of isochronous split-transactions. This data structure uses the scheduling model of 
isochronous TDs (iTD, Section 3.3) (see Section 4.7 for the operational model of iTDs) with the contiguous 
data feature provided by queue heads. This simple arrangement allows a single isochronous scheduling 
model and adds the additional feature that all data received from the endpoint (per split transaction) must 
land into a contiguous buffer.  

4.12.3.1 Split Transaction Scheduling Mechanisms for Isochronous 
Full-speed isochronous transactions are managed through a transaction translator's periodic pipeline. As with 
full- and low-speed interrupt, system software manages each transaction translator's periodic pipeline by 
budgeting and scheduling exactly during which micro-frames the start-splits and complete-splits for each 
full-speed isochronous endpoint occur. The requirements described in Section 4.12.2.1 apply. Figure 4-21 
illustrates the general scheduling boundary conditions that are supported by the EHCI periodic schedule. 
The SX and CX labels indicate micro-frames where software can schedule start- and complete-splits 
(respectively). The H-Frame boundaries are marked with a large, solid bold vertical line. The B-Frame 
boundaries are marked with a large, bold, dashed line. The bottom of the figure illustrates the relationship of 
an siTD to the H-Frame.  
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Figure 4-21. Split Transaction, Isochronous Scheduling Boundary Conditions 

When the endpoint is an isochronous OUT, there are only start-splits, and no complete-splits. When the 
endpoint is an isochronous IN, there is at most one start-split and one to N complete-splits. The scheduling 
boundary cases are: 
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•  Case 1: The entire split transaction is completely bounded by an H-Frame. For example:  the start-splits 
and complete-splits are all scheduled to occur in the same H-Frame. 

•  Case 2a: This boundary case is where one or more (at most two) complete-splits of a split transaction 
IN are scheduled across an H-Frame boundary. This can only occur when the split transaction has the 
possibility of moving data in B-Frame, micro-frames 6 or 7 (H-Frame micro-frame 7 or 0). When an H-
Frame boundary wrap condition occurs, the scheduling of the split transaction spans more than one 
location in the periodic list.  (e.g. it takes two siTDs in adjacent periodic frame list locations to fully 
describe the scheduling for the split transaction).  

Although the scheduling of the split transaction may take two data structures, all of the complete-splits 
for each full-speed IN isochronous transaction must use only one data pointer. For this reason, siTDs 
contain a back pointer, the use of which is described below.  

Software must never schedule full-speed isochronous OUTs across an H-Frame boundary. 

•  Case 2b: This case can only occur for a very large isochronous IN. It is the only allowed scenario where 
a start-split and complete-split for the same endpoint can occur in the same micro-frame. Software must 
enforce this rule by scheduling the large transaction first. Large is defined to be anything larger than 579 
byte maximum packet size. 

A subset of the same mechanisms employed by full- and low-speed interrupt queue heads are employed in 
siTDs to schedule and track the portions of isochronous split transactions. The following fields are 
initialized by system software to instruct the host controller when to execute portions of the split transaction 
protocol.  

•  SplitXState. This is a single bit residing in the Status field of an siTD (see Table 3-11). This bit is used 
to track the current state of the split transaction. The rules for managing this bit are described in Section 
4.12.3.3. 

•  µFrame S-mask. This is a bit-field where-in system software sets a bit corresponding to the micro-frame 
(within an H-Frame) that the host controller should execute a start-split transaction. This is always 
qualified by the value of the SplitXState bit. For example, referring to the IN example in Figure 4-21, 
case one, the S-mask would have a value of 00000001b indicating that if the siTD is traversed by the 
host controller, and the SplitXState indicates Do Start Split, and the current micro-frame as indicated 
by FRINDEX[2:0] is 0, then execute a start-split transaction. 

•  µFrame C-mask. This is a bit-field where system software sets one or more bits corresponding to the 
micro-frames (within an H-Frame) that the host controller should execute complete-split transactions. 
The interpretation of this field is always qualified by the value of the SplitXState bit. For example, 
referring to the IN example in Figure 4-21, case one, the C-mask would have a value of 00111100b 
indicating that if the siTD is traversed by the host controller, and the SplitXState indicates Do Complete 
Split, and the current micro-frame as indicated by FRINDEX[2:0] is 2, 3, 4, or 5, then execute a 
complete-split transaction. 

•  Back Pointer. This field in a siTD is used to complete an IN split-transaction using the previous H-
Frame's siTD. This is only used when the scheduling of the complete-splits span an H-Frame boundary.  

There exists a one-to-one relationship between a high-speed isochronous split transaction (including all 
start- and complete-splits) and one full-speed isochronous transaction. An siTD contains (amongst other 
things) buffer state and split transaction scheduling information. An siTD's buffer state always maps to one 
full-speed isochronous data payload. This means that for any full-speed transaction payload, a single siTD's 
data buffer must be used. This rule applies to both IN an OUTs. An siTD's scheduling information usually 
also maps to one high-speed isochronous split transaction. The exception to this rule is the H-Frame  
boundary wrap cases mentioned above.  

The siTD data structure describes at most, one frame's worth of high-speed transactions and that description 
is strictly bounded within a frame boundary. Figure 4-22 illustrates some examples. On the top are examples 
of the full-speed transaction footprints for the boundary scheduling cases described above. In the middle are 
time-frame references for both the B-Frames (HS/FS/LS Bus) and the H-Frames. On the bottom is 
illustrated the relationship between the scope of an siTD description and the time references. Each H-Frame 



EHCI Revision 1.0 3/12/2002 

USB 2.0   105 

corresponds to a single location in the periodic frame list. The implication is that each siTD is reachable 
from a single periodic frame list location at a time. 

0 1 2 3 4 5 6 70 1 2 3 4 5 6 75 6 7
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Figure 4-22. siTD Scheduling Boundary Examples 

Each case is described below: 

•  Case 1: One siTD is sufficient to describe and complete the isochronous split transaction because the 
whole isochronous split transaction is tightly contained within a single H-Frame.  

•  Case 2a, 2b: Although both INs and OUTs can have these footprints, OUTs always take only one siTD 
to schedule. However, INs (for these boundary cases) require two siTDs to complete the scheduling of 
the isochronous split transaction. siTDX is used to always issue the start-split and the first N complete-
splits. The full-speed transaction (for these cases) can deliver data on the full-speed bus segment during 
micro-frame 7 of H-FrameY+1, or micro-frame 0 of H-FrameY+2. The complete splits are scheduled 
using siTDX+2 (not shown). The complete-splits to extract this data must use the buffer pointer from 
siTDX+1. The only way for the host controller to reach siTDX+1 from H-FrameY+2 is to use siTDX+2's 
back pointer. The host controller rules for when to use the back pointer are described is Section 
4.12.3.3.2.1. 

Software must apply the following rules when calculating the schedule and linking the schedule data 
structures into the periodic schedule: 

•  Software must ensure that an isochronous split-transaction is started so that it will complete before the 
end of the B-Frame.  

•  Software must ensure that for a single full-speed isochronous endpoint, there is never a start-split and 
complete-split in H-Frame, micro-frame 1. This is mandated as a rule so that case 2a and case 2b can be 
discriminated. According to the core USB specification, the long isochronous transaction illustrated in 
Case 2b, could be scheduled so that the start-split was in micro-frame 1 of H-Frame N and the last 
complete-split would need to occur in micro-frame 1 of H-Frame N+1. However, it is impossible to 
discriminate between cases 2a and case 2b, which has significant impact on the complexity of the host 
controller.  

4.12.3.2 Tracking Split Transaction Progress for Isochronous Transfers 
To correctly maintain the data stream, the host controller must be able to detect and report errors where 
device to host data is lost. Isochronous endpoints do not employ the concept of a halt on error, however the 
host is required to identify and report per-packet errors observed in the data stream. This includes schedule 
traversal problems (skipped micro-frames), timeouts and corrupted data received.  

In similar kind to interrupt split-transactions, the portions of the split transaction protocol must execute in 
the micro-frames they are scheduled. The queue head data structure used to manage full- and low-speed 
interrupt has several mechanisms for tracking when portions of a transaction have occurred. Isochronous 
transfers use siTDs, for their transfers, and the data structures are only reachable via the schedule in the 
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exact micro-frame in which they are required (so all the mechanism employed for tracking in queue heads is 
not required for siTDs). Software has the option of reusing siTD several times in the complete periodic 
schedule. However, it must ensure that the results of split transaction N are consumed and the siTD re-
initialized (activated) before the host controller gets back to the siTD (in a future micro-frame).  

Split-transaction isochronous OUTs utilize a low-level protocol to indicate which portions of the split 
transaction data have arrived. Control over the low-level protocol is exposed in an siTD via the fields 
Transaction Position (TP) and Transaction Count (T-count). If the entire data payload for the OUT split 
transaction is larger than 188 bytes, there will be more than one start-split transaction, each of which require 
proper annotation. If host hold-offs occur, then the sequence of annotations received from the host will not 
be complete, which is detected and handled by the transaction translator. See Section 4.12.3.3.1 for a 
description on how these fields are used during a sequence of start-split transactions.  

The fields siTD.T-Count and siTD.TP are used by the host controller to drive and sequence the transaction 
position annotations. It is the responsibility of system software to properly initialize these fields in each 
siTD. Once the budget for a split-transaction isochronous endpoint is established, S-mask, T-Count, and TP 
initialization values for all the siTD associated with the endpoint are constant. They remain constant until 
the budget for the endpoint is recalculated by software and the periodic schedule adjusted.  

For IN-endpoints, the transaction translator simply annotates the response data packets with enough 
information to allow the host controller to identify the last data. As with split transaction Interrupt, it is the 
host controller's responsibility to detect when it has missed an opportunity to execute a complete-split. The 
following field in the siTD is used to track and detect errors in the execution of a split transaction for an IN 
isochronous endpoint. 

•  C-prog-mask. This is an eight-bit bit-vector where the host controller keeps track of which complete-
splits have been executed. Due to the nature of the Transaction Translator periodic pipeline, the 
complete-splits need to be executed in-order. The host controller needs to detect when the complete-
splits have not been executed in order. This can only occur due to system hold-offs where the host 
controller cannot get to the memory-based schedule. C-prog-mask is a simple bit-vector that the host 
controller sets a bit for each complete-split executed. The bit position is determined by the micro-frame 
(FRINDEX[2:0]) number in which the complete-split was executed. The host controller always checks 
C-prog-mask before executing a complete-split transaction. If the previous complete-splits have not 
been executed, then it means one (or more) have been skipped and data has potentially been lost. 
System software is required to initialize this field to zero before setting an siTD's Active bit to a one. 

If a transaction translator returns with the final data before all of the complete-splits have been executed, the 
state of the transfer is advanced so that the remaining complete-splits are not executed. Refer to Section 
4.12.3.3.2 for a description on how the state of the transfer is advanced. It is important to note that an IN 
siTD is retired based solely on the responses from the Transaction Translator to the complete-split 
transactions. This means, for example, that it is possible for a transaction translator to respond to a complete-
split with an MDATA PID. The number of bytes in the MDATA's data payload could cause the siTD field 
Total Bytes to Transfer to decrement to zero. This response can occur, before all of the scheduled complete-
splits have been executed. In other interface, data structures (e.g. high-speed data streams through queue 
heads), the transition of Total Bytes to Transfer to zero signals the end of the transfer and results in setting of 
the Active bit to zero. However, in this case, the result has not been delivered by the Transaction Translator 
and the host must continue with the next complete-split transaction to extract the residual transaction state. 
This scenario occurs because of the pipeline rules for a Transaction Translator (see Chapter 11 of the 
Universal Serial Bus Revision 2.0). In summary the periodic pipeline rules require that on a micro-frame 
boundary, the Transaction Translator will hold the final two bytes received (if it has not seen an End Of 
Packet (EOP)) in the full-speed bus pipe stage and give the remaining bytes to the high-speed pipeline stage. 
At the micro-frame boundary, the Transaction Translator could have received the entire packet (including 
both CRC bytes) but not received the packet EOP. In the next micro-frame, the Transaction Translator will 
respond with an MDATA and send all of the data bytes (with the two CRC bytes being held in the full-speed 
pipeline stage). This could cause the siTD to decrement it's Total Bytes to Transfer field to zero, indicating it 
has received all expected data. The host must still execute one more (scheduled) complete-split transaction 
in order to extract the results of the full-speed transaction from the Transaction Translator (for example, the 
Transaction Translator may have detected a CRC failure, and this result must be forwarded to the host). 



EHCI Revision 1.0 3/12/2002 

USB 2.0   107 

If the host experiences hold-offs that cause the host controller to skip one or more (but not all) scheduled 
split transactions for an isochronous OUT, then the protocol to the transaction translator will not be 
consistent and the transaction translator will detect and react to the problem. Likewise, for host hold-offs 
that cause the host controller to skip one or more (but not all) scheduled split transactions for an isochronous 
IN, the C-prog-mask is used by the host controller to detect errors. However, if the host experiences a hold-
off that causes it to skip all of an siTD, or an siTD expires during a host hold off (e.g. a hold-off occurs and 
the siTD is no longer reachable by the host controller in order for it to report the hold-off event), then system 
software must detect that the siTDs have not been processed by the host controller (e.g. state not advanced) 
and report the appropriate error to the client driver. 

4.12.3.3 Split Transaction Execution State Machine for Isochronous 
In the following presentation, all references to micro-frame are in the context of a micro-frame within an H-
Frame.  

If the Active bit in the Status byte is a zero, the host controller will ignore the siTD and continue traversing 
the periodic schedule. Otherwise the host controller will process the siTD as specified below. 

A split transaction state machine is used to manage the split-transaction protocol sequence. The host 
controller uses the fields defined in Section 4.12.3.2, plus the variable cMicroFrameBit defined in Section 
4.12.2.4 to track the progress of an isochronous split transaction. 

Figure 4-23 illustrates the state machine for managing an siTD through an isochronous split transaction. 
Bold, dotted circles denote the state of the Active bit in the Status field of a siTD. The Bold, dotted arcs 
denote the transitions between these states. Solid circles denote the states of the split transaction state 
machine and the solid arcs denote the transitions between these states. Dotted arcs and boxes reference 
actions that take place either as a result of a transition or from being in a state. 
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Figure 4-23. Split Transaction State Machine for Isochronous 

4.12.3.3.1 Periodic Isochronous - Do Start Split 
Isochronous split transaction OUTs use only this state. An siTD for a split-transaction isochronous IN is 
either initialized to this state, or the siTD transitions to this state from Do Complete Split when a case 2a 
(IN) or 2b scheduling boundary isochronous split-transaction completes.  
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Each time the host controller reaches an active siTD in this state, it checks the siTD.S-mask against 
cMicroFrameBit. If there is a one in the appropriate position, the siTD will execute a start-split transaction. 
By definition, the host controller cannot reach an siTD at the wrong time. 

If the I/O field indicates an IN, then the start-split transaction includes only the extended token plus the full-
speed token. Software must initialize the siTD.Total Bytes To Transfer field to the number of bytes 
expected. This is usually the maximum packet size for the full-speed endpoint. The host controller exits this 
state when the start-split transaction is complete.  

The remainder of this section is specific to an isochronous OUT endpoint (i.e.  the I/O field indicates an 
OUT). When the host controller executes a start-split transaction for an isochronous OUT it includes a data 
payload in the start-split transaction. The memory buffer address for the data payload is constructed by 
concatenating siTD.Current Offset with the page pointer indicated by the page selector field (siTD.P). A 
zero in this field selects Page 0 and a 1 selects Page 1. During the start-split for an OUT, if the data transfer 
crosses a page boundary during the transaction, the host controller must detect the page cross, update the 
siTD.P-bit from a zero to a one, and begin using the siTD.Page 1 with siTD.Current Offset as the memory 
address pointer. 

The field siTD.TP is used to annotate each start-split transaction with the indication of which part of the 
split-transaction data the current payload represents (ALL, BEGIN, MID, END). In all cases the host 
controller simply uses the value in siTD.TP to mark the start-split with the correct transaction position code.  

T-Count is always initialized to the number of start-splits for the current frame. TP is always initialized to 
the first required transaction position identifier. The scheduling boundary case (see Figure 4-22) is used to 
determine the initial value of TP. The initial cases are summarized in Table 4–14.  

Table 4–14. Initial Conditions for OUT siTD's TP and T-count Fields 

Case T-count TP Description 

1, 
2a 

=1 ALL When the OUT data payload is less than (or equal to) 188 bytes, only one 
start-split is required to move the data. The one start-split must be marked 
with an ALL.  

1, 
2a 

!=1 BEGIN When the OUT data payload is greater than 188 bytes more than one 
start-split must be used to move the data. The initial start-split must be 
marked with a BEGIN. 

After each start-split transaction is complete, the host controller updates T-Count and TP appropriately so 
that the next start-split is correctly annotated. Table 4–15 illustrates all of the TP and T-count transitions, 
which must be accomplished by the host controller.  

Table 4–15. Transaction Position (TP)/Transaction Count (T-Count) Transition Table 

 
TP 

T-count 
next 

TP 
next 

 
Description 

ALL 0 N/A Transition from ALL, to done.  

BEGIN 1 END Transition from BEGIN to END. Occurs when T-count starts at 2.  

BEGIN !=1 MID Transition from BEGIN to MID. Occurs when T-count starts at greater 
than 2.  

MID !=1 MID TP stays at MID while T-count is not equal to 1 (e.g. greater than 1). This 
case can occur for any of the scheduling boundary cases where the T-
count starts greater than 3. 

MID 1 END Transition from MID to END. This case can occur for any of the 
scheduling boundary cases where the T-count starts greater than 2. 

The start-split transactions do not receive a handshake from the transaction translator, so the host controller 
always advances the transfer state in the siTD after the bus transaction is complete. To advance the transfer 
state the following operations take place:  
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•  The siTD.Total Bytes To Transfer and the siTD.Current Offset fields are adjusted to reflect the number 
of bytes transferred. 

•  The siTD.P (page selector) bit is updated appropriately. 

•  The siTD.TP and siTD.T-count fields are updated appropriately as defined in Table 4–15. 

These fields are then written back to the memory based siTD. 

The S-mask is fixed for the life of the current budget. As mentioned above, TP and T-count are set 
specifically in each siTD to reflect the data to be sent from this siTD. Therefore, regardless of the value of S-
mask, the actual number of start-split transactions depends on T-count (or equivalently, Total Bytes to 
Transfer). The host controller must set the Active bit to a zero when it detects that all of the schedule data 
has been sent to the bus. The preferred method is to detect when T-Count decrements to zero as a result of a 
start-split bus transaction. Equivalently, the host controller can detect when Total Bytes to Transfer 
decrements to zero. Either implementation must ensure that if the initial condition is Total Bytes to Transfer 
equal to zero and T-count is equal to a one, then the host controller will issue a single start-split, with a zero-
length data payload. Software must ensure that TP, T-count and Total Bytes to Transfer are set to deliver the 
appropriate number of bus transactions from each siTD. An inconsistent combination will yield undefined 
behavior. 

If the host experiences hold-offs that cause the host controller to skip start-split transactions for an OUT 
transfer, the state of the transfer will not progress appropriately. The transaction translator will observe 
protocol violations in the arrival of the start-splits for the OUT endpoint (i.e. the transaction position 
annotation will be incorrect as received by the transaction translator).  

Example scenarios are described in Section 4.12.3.4. 

A host controller implementation can optionally track the progress of an OUT split transaction by setting 
appropriate bits in the siTD.C-prog-mask as it executes each scheduled start-split. The checkPreviousBit() 
algorithm defined in Section 4.12.3.3.2 can be used prior to executing each start-split to determine whether 
start-splits were skipped. The host controller can use this mechanism to detect missed micro-frames. It can 
then set the siTD’s Active bit to zero and stop execution of this siTD. This saves on both memory and high-
speed bus bandwidth. 

4.12.3.3.2 Periodic Isochronous - Do Complete Split 
This state is only used by a split-transaction isochronous IN endpoint. This state is entered unconditionally 
from the Do Start State after a start-split transaction is executed for an IN endpoint. Each time the host 
controller visits an siTD in this state, it conducts a number of tests to determine whether it should execute a 
complete-split transaction. The individual tests are listed below. The sequence they are applied depends on 
which micro-frame the host controller is currently executing which means that the tests might not be applied 
until after the siTD referenced from the back pointer has been fetched. 

•  Test A. cMicroFrameBit is bit-wise anded with siTD.C-mask field. A non-zero result indicates that 
software scheduled a complete-split for this endpoint, during this micro-frame. This test is always 
applied to a newly fetched siTD that is in this state. 

•  Test B. The siTD.C-prog-mask bit vector is checked to determine whether the previous complete splits 
have been executed. An example algorithm is below (this is slightly different than the algorithm used in 
Section 4.12.2.4.2). The sequence in which this test is applied depends on the current value of 
FRINDEX[2:0]. If FRINDEX[2:0] is 0 or 1, it is not applied until the back pointer has been used. 
Otherwise it is applied immediately. 
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Algorithm Boolean CheckPreviousBit(siTD.C-prog-mask, siTD.C-mask, cMicroFrameBit)
Begin
Boolean rvalue = TRUE;

previousBit = cMicroFrameBit rotate-right(1)

-- Bit-wise anding previousBit with C-mask indicates whether there was an intent
-- to send a complete split in the previous micro-frame. So, if the
-- 'previous bit' is set in C-mask, check C-prog-mask to make sure it
-- happened.

if previousBit bitAND siTD.C-mask then
if not (previousBit bitAND siTD.C-prog-mask) then

rvalue = FALSE
End if

End if

Return rvalue
End Algorithm

If Test A is true and FRINDEX[2:0] is zero or one, then this is a case 2a or 2b scheduling boundary (see 
Figure 4-21). See Section 4.12.3.3.2.1 for details in handling this condition.  

If Test A and Test B evaluate to true, then the host controller will execute a complete-split transaction using 
the transfer state of the current siTD. When the host controller commits to executing the complete-split 
transaction, it updates QH.C-prog-mask by bit-ORing with cMicroFrameBit. The transfer state is advanced 
based on the completion status of the complete-split transaction. To advance the transfer state of an IN siTD, 
the host controller must: 

•  Decrement the number of bytes received from siTD.Total Bytes To Transfer, 

•  Adjust siTD.Current Offset by the number of bytes received,  

•  Adjust siTD.P (page selector) field if the transfer caused the host controller to use the next page 
pointer, and 

•  Set any appropriate bits in the siTD.Status field, depending on the results of the transaction. 

Note that if the host controller encounters a condition where siTD.Total Bytes To Transfer is zero, and it 
receives more data, the host controller must not write the additional data to memory. The siTD.Status.Active 
bit must be set to zero and the siTD.Status.Babble Detected bit must be set to a one. The fields siTD.Total 
Bytes To Transfer, siTD.Current Offset, and siTD.P (page selector) are not required to be updated as a result 
of this transaction attempt. 

The host controller must accept (assuming good data packet CRC and sufficient room in the buffer as 
indicated by the value of siTD.Total Bytes To Transfer) MDATA and DATA0/1 data payloads up to and 
including 192 bytes. A host controller implementation may optionally set siTD.Status Active to a zero and 
siTD.Status.Babble Detected to a one when it receives and MDATA or DATA0/1 with a data payload of 
more than 192 bytes. 

The following responses have the noted effects: 

•  ERR. The full-speed transaction completed with a time-out or bad CRC and this is a reflection of that 
error to the host. The host controller sets the ERR bit in the siTD.Status field and sets the Active bit to a 
zero. 

•  Transaction Error (XactErr). The complete-split transaction encounters a Timeout, CRC16 failure, etc. 
The siTD.Status field XactErr field is set to a one and the complete-split transaction must be retried 
immediately. The host controller must use an internal error counter to count the number of retries as a 
counter field is not provided in the siTD data structure. The host controller will not retry more than two 
times. If the host controller exhausts the retries or the end of the micro-frame occurs, the Active bit is set 
to zero. 

•  DATAx (0 or 1). This response signals that the final data for the split transaction has arrived. The 
transfer state of the siTD is advanced and the Active bit is set to a zero. If the Bytes To Transfer field has 
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not decremented to zero (including the reception of the data payload in the DATAx response), then less 
data than was expected, or allowed for was actually received. This short packet event does not set the 
USBINT status bit in the USBSTS register to a one. The host controller will not detect this condition. 

•  NYET (and Last). On each NYET response, the host controller also checks to determine whether this is 
the last complete-split for this split transaction. Last was defined in Section 4.12.2.4.2. If it is the last 
complete-split (with a NYET response), then the transfer state of the siTD is not advanced (never 
received any data) and the Active bit is set to a zero. No bits are set in the Status field because this is 
essentially a skipped transaction. The transaction translator must have responded to all the scheduled 
clompete-splits with NYETs, meaning that the start-split issued by the host controller was not received. 
This result should be interpreted by system software as if the transaction was completely skipped. 

The test for whether this is the last complete split can be performed by XORing C-mask with C-prog-
mask. A zero result indicates that all complete-splits have been executed.  

•  MDATA (and Last). See above description for testing for Last. This can only occur when there is an 
error condition. Either there has been a babble condition on the full-speed link, which delayed the 
completion of the full-speed transaction, or software set up the S-mask and/or C-masks incorrectly. The 
host controller must set XactErr bit to a one and the Active bit is set to a zero.  

•  NYET (and not Last). See above description for testing for Last. The complete-split transaction 
received a NYET response from the transaction translator. Do not update any transfer state (except for 
C-prog-mask) and stay in this state. 

•  MDATA (and not Last). The transaction translator responds with an MDATA when it has partial data 
for the split transaction. For example, the full-speed transaction data payload spans from micro-frame X 
to X+1 and during micro-frame X, the transaction translator will respond with an MDATA and the data 
accumulated up to the end of micro-frame X.  The host controller advances the transfer state to reflect 
the number of bytes received. 

If Test A succeeds, but Test B fails, it means that one or more of the complete-splits have been skipped. The 
host controller sets the Missed Micro-Frame status bit and sets the Active bit to a zero. 

4.12.3.3.2.1 Complete-Split for Scheduling Boundary Cases 2a, 2b 
Boundary cases 2a and 2b (INs only) (see Figure 4-21) require that the host controller use the transaction 
state context of the previous siTD to finish the split transaction. Table 4–16 enumerates the transaction state 
fields. 

Table 4–16. Summary siTD Split Transaction State 

Buffer State Status Execution Progress 

Total Bytes To Transfer 
P (page select) 
Current Offset 
TP (transaction position) 
T-count (transaction count) 

All bits in the status field C-prog-mask 

Note: TP and T-count are used only for Host to Device (OUT) endpoints. 

If software has budgeted the schedule of this data stream with a frame wrap case, then it must initialize the 
siTD.Back Pointer field to reference a valid siTD and will have the siTD.Back Pointer.T-bit in the 
siTD.Back Pointer  field set to a zero. Otherwise, software must set the siTD.Back Pointer.T-bit in the 
siTD.Back Pointer field to a one. The host controller's rules for interpreting when to use the siTD.Back 
Pointer field are listed below. These rules apply only when the siTD's Active bit is a one and the SplitXState 
is Do Complete Split.  

•  When cMicroFrameBit is a 1h and the siTDX.Back Pointer.T-bit is a zero, or  

•  If cMicroFrameBit is a 2h and siTDX.S-mask[0] is a zero  
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When either of these conditions apply, then the host controller must use the transaction state from siTDX-1. 

In order to access siTDX-1, the host controller reads on-chip the siTD referenced from siTDX.Back Pointer. 
The host controller must save the entire state from siTDX while processing siTDX-1. This is to accommodate 
for case 2b processing. The host controller must not recursively walk the list of siTD.Back Pointers.  

If siTDX-1 is active (Active bit is a one and SplitXStat is Do Complete Split), then both Test A and Test B are 
applied as described above. If these criteria to execute a complete-split are met, the host controller executes 
the complete split and evaluates the results as described above. The transaction state (see Table 4–16) of 
siTDX-1 is appropriately advanced based on the results and written back to memory. If the resultant state of 
siTDX-1's Active bit is a one, then the host controller returns to the context of siTDX, and follows its next 
pointer to the next schedule item. No updates to siTDX are necessary.  

If siTDX-1 is active (Active bit is a one and SplitXStat is Do Start Split), then the host controller must set 
Active bit to a zero and Missed Micro-Frame status bit to a one and the resultant status written back to 
memory.  

If siTDX-1's Active bit is a zero, (because it was zero when the host controller first visited siTDX-1 via siTDX's 
back pointer, it transitioned to zero as a result of a detected error, or the results of siTDX-1's complete-split 
transaction transitioned it to zero), then the host controller returns to the context of siTDX and transitions its 
SplitXState to Do Start Split. The host controller then determines whether the case 2b start split boundary 
condition exists (i.e. if cMicroframeBit is a 1b and siTDX.S-mask[0] is a 1b). If this criterion is met the host 
controller immediately executes a start-split transaction and appropriately advances the transaction state of 
siTDX, then follows siTDX.Next Pointer to the next schedule item. If the criterion is not met, the host 
controller simply follows siTDX.Next Pointer to the next schedule item. Note that in the case of a 2b 
boundary case, the split-transaction of siTDX-1 will have its Active bit set to zero when the host controller 
returns to the context of siTDX. Also, note that software should not initialize an siTD with C-mask bits 0 and 
1 set to a one and an S-mask with bit zero set to a one. This scheduling combination is not supported and the 
behavior of the host controller is undefined. 

4.12.3.4 Split Transaction for Isochronous - Processing Examples 
There is an important difference between how the hardware/software manages the isochronous split 
transaction state machine and how it manages the asynchronous and interrupt split transaction state 
machines. The asynchronous and interrupt split transaction state machines are encapsulated within a single 
queue head. The progress of the data stream depends on the progress of each split transaction. In some 
respects, the split-transaction state machine is sequenced via the Execute Transaction queue head traversal 
state machine (see Figure 4-14).   

Isochronous is a pure time-oriented transaction/data stream. The interface data structures are optimized to 
efficiently describe transactions that need to occur at specific times. The isochronous split-transaction state 
machine must be managed across these time-oriented data structures. This means that system software must 
correctly describe the scheduling of split-transactions across more than one data structure.  Then the host 
controller must make the appropriate state transitions at the appropriate times, in the correct data structures.  

For example, Table 4–17 illustrates a couple of frames worth of scheduling required to schedule a case 2a 
full-speed isochronous data stream. 
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Table 4–17. Example Case 2a - Software Scheduling siTDs for an IN Endpoint 

siTDX Micro-Frames Initial 
# Masks 0 1 2 3 4 5 6 7 SplitXState 

S-Mask     1    X 
C-Mask 1 1     1 1 

Do Start Split 

S-Mask     1    X+1 
C-Mask 1 1     1 1 

Do Complete 
Split 

S-Mask     1    X+2 

C-Mask 1 1     1 1 

Do Complete 
Split 

S-Mask X+3 
C-Mask 

Repeats previous pattern Do Complete 
Split 

This example shows the first three siTDs for the transaction stream. Since this is the case-2a frame-wrap 
case, S-masks of all siTDs for this endpoint have a value of 10h (a one bit in micro-frame 4) and C-mask 
value of C3h (one-bits in micro-frames 0,1, 6 and 7). Additionally, sofware ensures that the Back Pointer 
field of each siTD references the appropriate siTD data structure (and the Back Pointer T-bits are set to 
zero).  

The initial SplitXState of the first siTD is Do Start Split. The host controller will visit the first siTD eight 
times during frame X. The C-mask bits in micro-frames 0 and 1 are ignored because the state is Do Start 
Split. During micro-frame 4, the host controller determines that it can run a start-split (and does) and 
changes SplitXState to Do Complete Split. During micro-frames 6 and 7, the host controller executes 
complete-splits. Notice the siTD for frame X+1 has it's SplitXState initialized to Do Complete Split. As the 
host controller continues to traverse the schedule during H-Frame X+1, it will visit the second siTD eight 
times. During micro-frames 0 and 1 it will detect that it must execute complete-splits.  

During H-Frame X+1, micro-frame 0, the host controller detects that siTDX+1's Back Pointer.T-bit is a zero, 
saves the state of siTDX+1 and fetches siTDX. It executes the complete split transaction using the transaction 
state of siTDX. If the siTDX split transaction is complete, siTD's Active bit is set to zero and results written 
back to siTDX. The host controller retains the fact that siTDX is retired and transitions the SplitXState in the 
siTDX+1 to Do Start Split. At this point, the host controller is prepared to execute the start-split for siTDX+1 
when it reaches micro-frame 4. If the split-transaction completes early (transaction-complete is defined in 
Section 4.12.3.3.2), i.e. before all the scheduled complete-splits have been executed, the host controller will 
transition siTDX.SplitXState to Do Start Split early and naturally skip the remaining scheduled complete-
split transactions. For this example, siTDX+1 does not receive a DATA0 response until H-Frame X+2, micro-
frame 1. 

During H-Frame X+2, micro-frame 0, the host controller detects that siTDX+2's Back Pointer.T-bit is a zero, 
saves the state of siTDX+2 and fetches siTDX+1. As described above, it executes another split transaction, 
receives an MDATA response, updates the transfer state, but does not modify the Active bit. The host 
controller returns to the context of siTDX+2, and traverses it's next pointer without any state change updates 
to siTDX+2. S 

During H-Frame X+2, micro-frame 1, the host controller detects siTDX+2's S-mask[0] is a zero, saves the 
state of siTDX+2 and fetches siTDX+1. It executes another complete-split transaction, receives a DATA0 
response, updates the transfer state and sets the Active bit to a zero. It returns to the state of siTDX+2 and 
changes its SplitXState to Do Start Split. At this point, the host controller is prepared to execute start-splits 
for siTDX+2 when it reaches micro-frame 4. 

<TBD… describe how software detects that there was missing micro-frames (don't think we care about 
missing out micro-frames. There is enough residual state to identify than not all transactions were 
executed.). 
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4.13 Host Controller Pause 
When the host controller's HCHalted bit in the USBSTS register is a zero, the host controller is sending SOF 
(Start OF Frame) packets down all enabled ports. When the schedules are enabled, the EHCI host controller 
will access the schedules in main memory each micro-frame. This constant pinging of main memory is 
known to create CPU power management problems for mobile systems. Specifically, mobile systems 
aggressively manage the state of the CPU, based on recent history usage. In the more aggressive power 
saving modes, the CPU can disable its caches. Current PC architectures assume that bus-master accesses to 
main memory must be cache-coherent. So, when bus masters are busy touching memory, the CPU power 
management software can detect this activity over time and inhibit the transition of the CPU into its lowest 
power savings mode. USB controllers are bus-masters and the frequency at which they access their memory-
based schedules keeps the CPU power management software from placing the CPU into its lowest power 
savings state.  

USB Host controllers don't access main memory when they are suspended. However, there are a variety of 
reasons why placing the USB controllers into suspend won't work, but they are beyond the scope of this 
document. The base requirement is that the USB controller needs to be kept out of main memory, while at 
the same time, the USB bus is kept from going into suspend.  

EHCI controllers provide a large-grained mechanism that can be manipulated by system software to change 
the memory access pattern of the host controller. System software can manipulate the schedule enable bits in 
the USBCMD register to turn on/off the scheduling traversal. A software heuristic can be applied to 
implement an on/off duty cycle that allows the USB to make reasonable progress and allow the CPU power 
management to get the CPU into its lowest power state. This method is not intended to be applied at all 
times to throttle USB, but should only be applied in very specific configurations and usage loads. For 
example, when only a keyboard or mouse is attached to the USB, the heuristic could detect times when the 
USB is attempting to move data only very infrequently and can adjust the duty cycle to allow the CPU to 
reach it's low power state for longer periods of time. Similarly, it could detect increases in the USB load and 
adjust the duty cycle appropriately, even to the point where the schedules are never disabled. The 
assumption here is that the USB is moving data and the CPU will be required to process the data streams. 

It is suggested that in order to provide a complete solution for the system, the companion host controllers 
should also provide a similar method to allow system software to inhibit the companion host controller from 
accessing it's shared memory based data structures (schedule lists or otherwise). 

4.14 Port Test Modes 
EHCI host controllers must implement the port test modes Test J_State, Test K_State, Test_Packet, Test 
Force_Enable, and Test SE0_NAK as described in the USB Specification Revision 2.0. The system is only 
allowed to test ports that are owned by the EHCI controller (e.g. CF-bit is a one and PortOwner bit is a 
zero). System software is allowed to have at most one port in test mode at a time. Placing more than one port 
in test mode will yield undefined results. The required, per port test sequence is (assuming the CF-bit in the 
CONFIGFLAG register is a one): 

•  Disable the periodic and asynchronous schedules by setting the Asynchronous Schedule Enable and 
Periodic Schedule Enable bits in the USBCMD register to a zero. 

•  Place all enabled root ports into the suspended state by setting the Suspend bit in each appropriate 
PORTSC register to a one. 

•  Set the Run/Stop bit in the USBCMD register to a zero and wait for the HCHalted bit in the USBSTS 
register, to transition to a one. Note that an EHCI host controller implementation may optionally allow 
port testing with the Run/Stop bit set to a one. However, all host controllers must support port testing 
with Run/Stop set to a zero and HCHalted set to a one. 

•  Set the Port Test Control field in the port under test PORTSC register to the value corresponding to the 
desired test mode. If the selected test is Test_Force_Enable, then the Run/Stop bit in the USBCMD 
register must then be transitioned back to one, in order to enable transmission of SOFs out of the port 
under test. 
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•  When the test is complete, system software must ensure the host controller is halted (HCHalted bit is a 
one) then it terminates and exits test mode by setting HCReset to a one. 

4.15 Interrupts 
The EHCI Host Controller hardware provides interrupt capability based on a number of sources. There are 
several general groups of interrupt sources: 

•  Interrupts as a result of executing transactions from the schedule (success and error conditions), 

•  Host controller events (Port change events, etc.), and 

•  Host Controller error events 

All transaction-based sources are maskable through the Host Controller’s Interrupt Enable register 
(USBINTR, see Table 2-11). Additionally, individual transfer descriptors can be marked to generate an 
interrupt on completion. This section describes each interrupt source and the processing that occurs in 
response to the interrupt.  

During normal operation, interrupts may be immediate or deferred until the next interrupt threshold occurs. 
The interrupt threshold is a tunable parameter via the Interrupt Threshold Control field in the USBCMD 
register. The value of this register controls when the host controller will generate an interrupt on behalf of 
normal transaction execution. When a transaction completes during an interrupt interval period, the interrupt 
signaling the completion of the transfer will not occur until the interrupt threshold occurs. For example, the 
default value is eight micro-frames. This means that the host controller will not generate interrupts any more 
frequently than once every eight micro-frames.  

Section 4.15.2.4 details effects of a host system error. 

If an interrupt has been scheduled to be generated for the current interrupt threshold interval, the interrupt is 
not signaled until after the status for the last complete transaction in the interval has been written back to 
host memory. This may sometimes result in the interrupt not being signaled until the next interrupt 
threshold.  

Initial interrupt processing is the same, regardless of the reason for the interrupt. When an interrupt is 
signaled by the hardware, CPU control is transferred to host controller's USB interrupt handler. The precise 
mechanism to accomplish the transfer is OS specific. For this discussion it is just assumed that control is 
received. When the interrupt handler receives control, its first action is to reads the USBSTS (USB Status 
Register). It then acknowledges the interrupt by clearing all of the interrupt status bits by writing ones to 
these bit positions. The handler then determines whether the interrupt is due to schedule processing or some 
other event. After acknowledging the interrupt, the handler (via an OS-specific mechanism), schedules a 
deferred procedure call (DPC) which will execute later. The DPC routine processes the results of the 
schedule execution. The precise mechanisms used are beyond the scope of this document. 

Note: the host controller is not required to de-assert a currently active interrupt condition when software sets 
the interrupt enables (in the USBINR register, see Section 2.3.3) to a zero. The only reliable method 
software should use for acknowledging an interrupt is by transitioning the appropriate status bits in the 
USBSTS register (Section 2.3.2) from a one to a zero. 

4.15.1 Transfer/Transaction Based Interrupts 
These interrupt sources are associated with transfer and transaction progress. They are all dependent on the 
next interrupt threshold. 

4.15.1.1 Transaction Error 
A transaction error is any error that caused the host controller to think that the transfer did not complete 
successfully. Table 4–18 lists the events/responses that the host can observe as a result of a transaction. The 
effects of the error counter and interrupt status are summarized in the following paragraphs. Most of these 
errors set the XactErr status bit in the appropriate interface data structure.  
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There is a small set of protocol errors that relate only when executing a queue head and fit under the 
umbrella of a WRONG PID error that are significant to explicitly identify. When these errors occur, the 
XactErr status bit in the queue head is set and the CErr field is decremented. When the PIDCode indicates a 
SETUP, the following responses are protocol errors and result in XactErr bit being set to a one and the CErr 
field being decremented. 

•  EPS field indicates a high-speed device and it returns a Nak handshake to a SETUP.  

•  EPS field indicates a high-speed device and it returns a Nyet handshake to a SETUP. 

•  EPS field indicates a low- or full-speed device and the complete-split receives a Nak handshake. 

Table 4–18 Summary of Transaction Errors 

Queue Head/qTD/iTD/siTD Side-effects USB Status Register 
(USBSTS) 

Event / 
Result 

Cerr Status Field USBERRINT 

CRC -1 XactErr set to a one.  11 

Timeout -1 XactErr set to a one. 11 

Bad PID2  -1 XactErr set to a one. 11 

Babble N/A Section 4.15.1.1.1 1 

Buffer Error N/A Section 4.15.1.1.2  
1 If occurs in a queue head, then USBERRINT is asserted only when CErr counts down from a one to a zero. In 

addition the queue is halted, see Section  4.10.3.1.  
2 The host controller received a response from the device, but it could not recognize the PID as a valid PID. 

4.15.1.1.1 Serial Bus Babble  
When a device transmits more data on the USB than the host controller is expecting for this transaction, it is 
defined to be babbling. In general, this is called a Packet Babble. When a device sends more data than the 
Maximum Length number of bytes, the host controller sets the Babble Detected bit to a one and halts the 
endpoint if it is using a queue head (see Section 4.10.3.1). Maximum Length is defined as the minimum of 
Total Bytes to Transfer and Maximum Packet Size. The CErr field is not decremented for a packet babble 
condition (only applies to queue heads). A babble condition also exists if IN transaction is in progress at 
High-speed EOF2 point. This is called a frame babble. A frame babble condition is recorded into the 
appropriate schedule data structure. In addition, the host controller must disable the port to which the frame 
babble is detected. 

The USBERRINT bit in the USBSTS register is set to a one and if the USB Error Interrupt Enable bit in the 
USBINTR register is a one, then a hardware interrupt is signaled to the system at the next interrupt 
threshold.  The host controller must never start an OUT transaction that will babble across a micro-frame 
EOF.  

NOTE: When a host controller detects a data PID mismatch, it must either: disable the packet babble 
checking for the duration of the bus transaction or do packet babble checking based solely on Maximum 
Packet Size. The USB core specification defines the requirements on a data receiver when it receives a 
data PID mismatch (e.g. expects a DATA0 and gets a DATA1 or visa-versa). In summary, it must 
ignore the received data and respond with an ACK handshake, in order to advance the transmitter's data 
sequence.  

The EHCI interface allows System software to provide buffers for a Control, Bulk or Interrupt IN 
endpoint that are not an even multiple of the maximum packet size specified by the device. Whenever a 
device misses an ACK for an IN endpoint, the host and device are out of synchronization with respect to 
the progress of the data transfer. The host controller may have advanced the transfer to a buffer that is 
less than maximum packet size. The device will re-send its maximum packet size data packet, with the 
original data PID, in response to the next IN token. In order to properly manage the bus protocol, the 
host controller must disable the packet babble check when it observes the data PID mismatch. 
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4.15.1.1.2 Data Buffer Error 
This event indicates that an overrun of incoming data or a underrun of outgoing data has occurred for this 
transaction. This would generally be caused by the host controller not being able to access required data 
buffers in memory within necessary latency requirements. These conditions are not considered transaction 
errors, and do not effect the error count in the queue head. When these errors do occur, the host controller 
records the fact the error occurred by setting the Data Buffer Error bit in the queue head, iTD or siTD.  

If the data buffer error occurs on a non-isochronous IN, the host controller will not issue a handshake to the 
endpoint. This will force the endpoint to resend the same data (and data toggle) in response to the next IN to 
the endpoint.  

If the data buffer error occurs on an OUT, the host controller must corrupt the end of the packet so that it 
cannot be interpreted by the device as a good data packet. Simply truncating the packet is not considered 
acceptable. An acceptable implementation option is to 1's complement the CRC bytes and send them. There 
are other options suggested in the Transaction Translator section of the USB Specification Revision 2.0. 

4.15.1.2 USB Interrupt (Interrupt on Completion (IOC)) 
Transfer Descriptors (iTDs, siTDs, and queue heads (qTDs)) contain a bit that can be set to cause an 
interrupt on their completion. The completion of the transfer associated with that schedule item causes the 
USB Interrupt (USBINT) bit in the USBSTS register to be set to a one. In addition, if a short packet is 
encountered on an IN transaction associated with a queue head, then this event also causes USBINT to be set 
to a one. If the USB Interrupt Enable bit in the USBINTR register is set to a one, a hardware interrupt is 
signaled to the system at the next interrupt threshold. If the completion is because of errors, the USBERRINT 
bit in the USBSTS register is also set to a one.  

4.15.1.3 Short Packet  
Reception of a data packet that is less than the endpoint’s Max Packet size during Control, Bulk or Interrupt 
transfers signals the completion of the transfer. Whenever a short packet completion occurs during a queue 
head execution, the USBINT bit in the USBSTS register is set to a one. If the USB Interrupt Enable bit is set 
in the USBINTR register, a hardware interrupt is signaled to the system at the next interrupt threshold. 

4.15.2 Host Controller Event Interrupts 
These interrupt sources are independent of the interrupt threshold (with the one exception being the Interrupt 
on Async Advance, see Section 4.15.2.3). 

4.15.2.1 Port Change Events 
Port registers contain status and status change bits. When the status change bits are set to a one, the host 
controller sets the Port Change Detect bit in the USBSTS register to a one. If the Port Change Interrupt 
Enable bit in the USBINTR register is a one, then the host controller will issue a hardware interrupt. The 
port status change bits include: 

•  Connect Status Change 

•  Port Enable/Disable Change 

•  Over-current Change 

•  Force Port Resume 
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4.15.2.2 Frame List Rollover 
This event indicates that the host controller has wrapped the frame list. The current programmed size of the 
frame list effects how often this interrupt occurs. If the frame list size is 1024, then the interrupt will occur 
every 1024 milliseconds, if it is 512, then it will occur every 512 milliseconds, etc.  

When a frame list rollover is detected, the host controller sets the Frame List Rollover bit in the USBSTS 
register to a one. If the Frame List Rollover Enable bit in the USBINTR register is set to a one, the host 
controller issues a hardware interrupt. This interrupt is not delayed to the next interrupt threshold.  

4.15.2.3 Interrupt on Async Advance 
This event is used for deterministic removal of queue heads from the asynchronous schedule. Whenever the 
host controller advances the on-chip context of the asynchronous schedule, it evaluates the value of the 
Interrupt on Async Advance Doorbell bit in the USBCMD register. If it is a one, it sets the Interrupt on 
Async Advance bit in the USBSTS register to a one. If the Interrupt on Async Advance Enable bit in the 
USBINTR register is a one, the host controller issues a hardware interrupt at the next interrupt threshold. A 
detailed explanation of this feature is described in Section 4.8.2.  

4.15.2.4 Host System Error 
The host controller is a bus master and any interaction between the host controller and the system may 
experience errors. The type of host error may be catastrophic to the host controller (such as a Master Abort) 
making it impossible for the host controller to continue in a coherent fashion. In the presence of non-
catastrophic host errors, such as parity errors, the host controller could potentially continue operation. The 
recommended behavior for these types of errors is to escalate it to a catastrophic error and halt the host 
controller. Host-based error must result in the following actions: 

•  The Run/Stop bit in the USBCMD register is set to a zero. 

•  The following bits in the USBSTS register are set: 

•  Host System Error bit is to a one. 

•  HCHalted bit is set to a one. 

•  If the Host System Error Enable bit in the USBINTR register is a one, then the host controller will issue 
a hardware interrupt. This interrupt is not delayed to the next interrupt threshold.  

Table 4–19 summarizes the required actions taken on the various host errors. 

Table 4–19. Summary Behavior of EHCI Host Controller on Host System Errors 

Cycle Type Master Abort Target Abort Data Phase Parity 

Frame list pointer fetch (read) Fatal Fatal Fatal [o] 

siTD fetch (read) Fatal Fatal Fatal [o] 

siTD status write-back (write) Fatal [o] Fatal [o] Fatal [o] 

iTD fetch (read) Fatal Fatal Fatal [o] 

iTD status write-back (write) Fatal [o] Fatal [o] Fatal [o] 

qTD fetch (read) Fatal Fatal Fatal [o] 

qHD status write-back (write) Fatal [o] Fatal [o] Fatal [o] 

Data write Fatal [o] Fatal [o] Fatal [o] 

Data read Fatal Fatal Fatal [o] 
[o] Potentially, a host controller implementation could continue operation without a halt. However, the 

recommended behavior is to halt the host controller. 
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Note: After a Host System Error, Software must reset the host controller via HCReset in the USBCMD 
register before re-initializing and restarting the host controller. 
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5. EHCI Extended Capabilities 
EHCI controllers export EHCI-specific extended capabilities utilizing a method similar to the PCI 
capabilities. If an EHCI controller implements any extended capabilities, it specifies a non-zero value in the 
EHCI Extended Capabilities Pointer (EECP) field of the HCCPARAMS register. This value is an offset into 
PCI Configuration space where the first extended capability register is located. Each capability register has 
the format illustrated in Table 5–1  

Table 5–1. Format of EHCI Extended Capability Pointer Register 

Bit Description 

31:16 Capability Specific. The definition and attributes of these bits depends on the specific 
capability.  

15:8 Next EHCI Extended Capability Pointer   RO. This field points to the PCI 
configuration space offset of the next EHCI extended capability pointer. A value of 00h 
indicates the end of the extended capability list. 

7:0 Capability ID   RO. This field identifies the EHCI Extended capability. See Table 5–2 
for a list of the valid EHCI extended capabilities.  

The Next field may contain a non-zero value. In which case it specifies the offset into PCI Configuration 
space where the next EHCI extended capability is located. The last EHCI extended capability in a linked list 
of capabilities must have its link field set to zero. 

Table 5–2. EHCI Extended Capability Codes 

ID Name Description 

00h Reserved This value is reserved and must not be used.  

01h Pre-OS to OS Handoff Synchronization OS Handoff Synchronization support capability. See 
Section 5.1 for details. 

5.1 EHCI Extended Capability: Pre-OS to OS Handoff Synchronization 
A system configuration may include support in the BIOS (also referred herein as Pre-OS software) for 
control of the EHCI controller. The OS Handoff Synchronization capability provides the mechanisms to 
allow BIOS to enable SMI support for EHCI events and also a set of registers that are used to implement a 
semaphore to synchronize ownership changes of the EHCI controller. The hand-off mechanism must be 
clean and precise and each participant must adhere to the protocol defined below. Failure to do so will result 
in two software agents believing they each have exclusive ownership of the EHCI and attempt to use the 
controller concurrently. Note that these registers are not intended to support ownership exchange of the 
companion controllers. 

The OS Handoff Synchronization EHCI extended capability includes two contiguous, 32-bit registers in PCI 
configuration space. The first register is the USB OS Handoff Synchronization EHCI Extended Capability 
register (USBLEGSUP), see Section 2.1.7 for the field definitions. This register is a standard EHCI 
extended capability pointer, including a EHCI Extended Capability ID field and a link to the next EHCI 
extended capability.  

The upper 16 bits of this register contain ownership semaphores. One semaphore is for the operating system 
(OS) and one is for the BIOS. These semaphores are readable and writable. These fields are in adjacent 
bytes, which allows each agent (OS or BIOS) to update their respective semaphore without overwriting the 
other ownership semaphore.  

The second 32-bit register is the USB OS Handoff Synchronization Control/Status register 
(USBLEGCTLSTS), see Section 2.1.8 for the field definitions. This register defines a set of control bits that 
BIOS can use to enable SMIs and a set of read-only bits that shadow a subset of the bits from the USBSTS 
register. The specific USBSTS register bits that are shadowed represent all of the EHCI events that can be 
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detected and enabled to generate an interrupt. The USBLEGCTLSTS register provides the mechanism for 
BIOS to map all EHCI events, all necessary reconfiguration events and OS ownership requests to SMIs.  

Following are two state machines that illustrate the proper protocol (e.g. updates to the ownership 
semphores) that BIOS and OS must adhere to in order to coherently request and/or relinquish ownership of 
the EHCI controller.  The conventions used in these figures are: 

•  Solid arcs denote single or multiple events that result in a state change. 

•  Dotted lines with arrows indicate side effects that take place. When attached to a solid arc, 
interpretation is that as a result of the event, the side effect occurs. 

Figure 5-1 illustrates the protocol state machine for the BIOS ownership. The OS Handoff Synchronization 
registers are located in the Aux well, so any system event that removes power from the Aux well will result 
in these registers being reset to their default values when Aux well power is restored.  

 Aux Well 
power on  

BIOS Owned1 

POST 

HC BIOS Owned semaphore = 1 

SMI on OS Ownership Change .eq. 1
.and. HC OS Owned semaphore .eq. 1 

HC BIOS Owned semaphore = 0 
BIOS Not Owned

HC BIOS Owned semaphore = 0 
HC OS Owned semaphore = 0 

SMI on OS Ownership Change .eq.1 
.and. HC OS Owned semaphore .eq. 0 

HC BIOS Owned semaphore = 1

Notes:  
1 The BIOS is allowed to claim control of the EHCI as a result of POST (Power On System Test) or as a result of the 

OS relinquishing control of the EHCI. The BIOS must never attempt to claim the EHCI once it has relinquished 
control.    

Figure 5-1. BIOS Ownership State Machine 

When power is applied to the auxiliary power well, the BIOS Owned and OS Owned semaphores in the 
USBLEGSUP go to their default values (e.g. zeros). BIOS may take ownership of the EHCI controller by 
setting the BIOS Owned semaphore to a one. BIOS is only allowed to take ownership of the EHCI controller 
when the OS Owned bit is a zero. BIOS then may configure the SMI events it needs including the SMI on 
OS Ownership Change. The BIOS now owns the EHCI controller, so it can configure the controller, 
enumerate the bus and use the devices found as necessary. 

Eventually, the operating system will load. If the operating system has support for the EHCI controller, it 
will need exclusive control over the EHCI controller. The OS driver must utilize the protocol defined in 
Figure 5-2 to request ownership of the host controller before it takes ownership and uses the controller. The 
OS driver initiates an ownership request by setting the OS Owned semaphore to a one. The OS waits for the 
BIOS Owned bit to go to a zero before attempting to use the EHCI controller. The time that OS must wait for 
BIOS to respond to the request for ownership is beyond the scope of this specification. Note that there is no 
similar SMI-type of event defined allowing BIOS to request ownership from the OS. 

If the BIOS has set SMI on OS Ownership Change in the USBLEGCTLSTS register to a one, it receives an 
SMI when the OS Driver sets the OS Owned semaphore to a one (above). BIOS observes that OS has 
changed the value of the OS Owned bit to a zero, there-by notifying BIOS that it intends to relinquish 
control of the EHCI..  
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Driver Load 

OS Owned 
(DX) 

HC OS Owned semaphore = 11 
OS Not Owned 

OS Request 
Ownership 

HC BIOS Owned semaphore .eq. 1 

HC BIOS Owned semaphore .eq. 0 

HC OS Owned semaphore = 01

Notes:  
1 Modifications to the OS Owned semaphore results in an SMI when the SMI on OS Ownership Enable bit in the 

USBLEGCTLSTS is set to a one.  
Figure 5-2. OS Ownership State Machine 

In the event that the OS driver unloads and/or wants to relinquish ownership of the EHCI controller, it must 
set the OS Owned semaphore to a zero. Again, if BIOS has set SMI on OS Ownership Enable in the 
USBLEGCTLSTS register to a one, it receives an SMI when the OS Driver sets the OS Owned semaphore 
to a zero. The BIOS observes that the OS has relinquished control and can then take over control of the 
EHCI controller as appropriate. Once system software has relinquished control of the controller, it must then 
request ownership as described above. 

Note that this mechanism is intended only to ensure that an exchange of ownership of the host controller can 
be accomplished in a very deterministic and reliable manner.  



EHCI Revision 1.0 3/12/2002 

124   USB 2.0 

 

Page intentionally left blank 



EHCI Revision 1.0 3/12/2002 

USB 2.0   125 

Appendix A. EHCI PCI Power Management Interface 
An advanced power management capabilities interface compliant with PCI Bus Power Management 
Interface Specification Revision 1.1 is incorporated into the EHCI. This interface allows the EHCI to be 
placed in various power management states offering a variety of power savings for a host system.  

Table A-3 highlights the EHCI support for power management states and features supported for each of the 
power management states. An EHCI implementation may internally gate-off USB clocks and suspend the 
USB transceivers (low power consumption mode) to provide these power savings. The methods utilized by 
each EHCI vendor to achieve the required behavior is implementation specific. The EHCI will assert PME# 
and retain chip context in accordance with the rules defined in the PCI Bus Power Management Interface 
Specification Revision 1.1and this specification  

The controller software driver must place all enabled downstream USB ports of the EHCI in the USB 
suspended state before exiting the D0 state. This is to ensure all downstream devices are in an inactive, low-
power mode.  

Table A-3. EHCI Support for Power Management States 

PCI Power 
Management 

State 

State Required/ 
Optional by 

Spec 

Comments 

D0 Required Fully awake backwards compatible state. All logic in full power mode. 

D1 Optional USB Sleep state with EHCI bus master capabilities disabled. All USB ports in 
suspended state. All logic in low latency power savings mode because of low 
latency returning to D0 state. 

D2 Optional USB Sleep state with EHCI bus master capabilities disabled. All USB ports in 
suspended state.  

D3hot Required Deep USB Sleep state with EHCI bus master capabilities disabled. All USB 
ports in suspended state.  

D3cold Required Fully asleep backwards compatible state. All downstream devices are either 
suspended or disconnected based on the implementation’s capability to 
supply downstream port power within the power budget. 
 

 

A.1 PCI Power Management Register Interface 
EHCI implementations follow the PCI Power Management register interface specified in the PCI Power 
Management Specification Rev 1.1.  Specific requirements and clarifications for EHCI implementations are: 

•  The host controller must be capable of asserting PME# when in any supported device state.  However, if 
the host controller supports systems in which the PME# assertion from D3cold is not possible (i.e. 
insufficient or non-existent Auxiliary power), then the “PME_Support” bit for D3cold (bit 15 of the 
PMC Register) must be modifiable.  Motherboard-down devices may use a software (BIOS) scheme for 
modifying the value reported in this read-only bit, while other devices may use a pin-strapping to 
determine the value that is reported. 

•  The Aux_Current or Data Register value reported by the EHCI should represent the maximum current 
that the host controller device will consume.  It must not include power consumed by devices connected 
to the downstream USB2 ports.  Note that if the host controller has been configured to not generate 
PME# from D3cold, then Aux_Current field or Data Register (D3 Power Consumed, D3 Power 
Dissipated) must report “000”. 

All other registers and field should follow the PCI PM specification. 
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A.1.1 Power State Transitions 
The EHCI enters the D0 power state from the D3cold power state when Vcc is applied and a hardware or 
software reset occurs. A software reset should not affect the PCI power management registers. The hardware 
reset may be either a PCI reset input or an optional power-on reset input.  

Power management software transitions the EHCI through D0, D1, D2, and D3hot power states via EHCI-
owned PCI Power Management register accesses. Additional power management policy may be 
implemented to switch or continuously apply an auxiliary power supply, VAUX, to the EHCI when Vcc is 
removed. While in this power state, referred to as D3cold, the EHCI exhibits identical behavior as the D3hot 
power state (except that configuration space accesses are not supported) and no additional EHCI hardware is 
required to distinguish between D3hot and D3cold. 

Per the PCI Power Management specification, the EHCI function asserts an internal reset during the D3hot 
to D0 transition.  The host controller must retain all relevant wake context when transitioning from D3hot to 
D0 in order for system software to process a wake request.  In PCI configuration space, this means that the 
PMCSR.PME_Status and PMCSR.PME_En bits must be maintained.  Additionally, the 
PMC.PME_Support(D3cold) bit must be maintained. 

Additionally, the EHCI controller must retain function-specific context that meets any of the following 
criteria: 

1. BIOS-configured registers that are programmed during system initialization 

2. Context needed to avoid USB re-enumeration 

3. Context needed for properly generating wake events 

4. Status bits for software to determine the source of a wake event 

Specifically, the following EHCI registers must not be reset during the D3hot to D0 transition and must be 
maintained in the auxiliary power well (see Section A.1.2 below): 

•  Configured Flag bit 

•  Port Status and Control Registers 

Note that all of the registers described above are only reset upon initial Aux power-up or software reset.  
Software must specifically clear any of these bits during subsequent initialization sequences, if desired.  The 
memory-space bits may also be cleared using the Host Controller Reset mechanism in the USB Command 
Register. 

A.1.2 Power State Definitions 
This section defines the EHCI behavior per power state when programmed using PMCSR.PowerState. 
Power management software may use alternate register mechanisms to place the EHCI in similar states. The 
EHCI shall support the D0, D3hot, and D3cold power states and is recommended to support the D1, D2 
power states. 

Any wakeup events as specified in Table A-4 will set PMCSR.PME_Status when the EHCI is programmed 
with PMCSR.Power_State set to D0, and a PCI PME# wake-up shall be signaled if enabled via 
PMCSR.PME_En. It is possible for one interrupt event which is also a wakeup event to cause the EHCI to 
signal both a PCI interrupt and a PME# to the host. Power management software shall either be designed to 
handle this condition or to mask the PME# signal when the EHCI is in D0. 

Software shall place each downstream USB port with power enabled into the Suspend or Disabled state 
before it attempts to move the EHCI out of the D0 power state. 

All EHCI contexts are retained in all power states except D3cold. For D3cold, the same context that is 
described in the previous section relative to the D3hot-to-D0 internal reset must be retained.  

The functional and wake-up characteristics for the EHCI power states are summarized in Table A-4. 
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Table A-4. EHCI Power State Summary 

Power State Functional Characteristics Wake-up Characteristics (Associated 
Enables must be Set) 

D0 � Fully functional EHCI device state 
� Unmasked interrupts are fully 

functional 

� Resume Detected on suspended port 
� Connect or Disconnect detected on port  
� Over Current detected on port 

D1 � EHCI shall preserve PCI configuration 
� EHCI shall preserve USB 

configuration 
� Hardware masks functional interrupts 
� All ports are disabled or suspended 

� Resume Detected on suspended port 
� Connect or Disconnect detected on port  
� Over Current detected on port 

D2 � EHCI shall preserve PCI configuration 
� EHCI shall preserve USB 

configuration 
� Hardware masks functional interrupts 
� All ports are disabled or suspended 

� Resume Detected on suspended port 
� Connect or Disconnect detected on port  
� Over Current detected on port 

D3hot � EHCI shall preserve PCI configuration 
� EHCI shall preserve USB 

configuration 
� Hardware masks functional interrupts 
� All ports are disabled or suspended 

� Resume Detected on suspended port 
� Connect or Disconnect detected on port  
� Over Current detected on port 

D3cold � PME Context in PCI Configuration 
space is preserved 

� Wake Context in EHCI Memory 
Space is preserved 

� All ports are disabled or suspended 

� Resume Detected on suspended port 
� Connect or Disconnect detected on port  
� Over Current detected on port 

 

A.1.3 PCI PME# Signal 
The PCI PME# signal shall be implemented as an open drain, active low signal that is driven low by the 
EHCI to request a change in its current power management state. PME# has additional electrical 
requirements over and above standard open drain signals that allow it to be shared between devices that are 
powered off and those which are powered on. Refer to the PCI Power Management specification for more 
details.
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Appendix B. EHCI 64-Bit Data Structures 
This appendix lists the 64-bit versions of the data structures. 

Host Controller Read/Write Host Controller Read Only

Next Link Pointer 0 Typ T 03-00H

07-04H

012345678910111213141516171819202122232425262728293031

0B-08H

0F-0CH

13-10H

1B-18H

1F-1CH

17-14H

Buffer Pointer (Page 0) [31:12] Device AddressEndPt R

Buffer Pointer (Page 1) [31:12]

Buffer Pointer (Page 2) [31:12]

Maximum Packet Size

Transaction 0 LengthStatus Transaction 0 Offset*

Transaction 1 LengthStatus Transaction 1 Offset*

Transaction 2 LengthStatus Transaction 2 Offset*

Transaction 3 LengthStatus Transaction 3 Offset*

23-20H

2B-28H

2F-2CH

27-24H

Transaction 4 LengthStatus Transaction 4 Offset*

Transaction 5 LengthStatus Transaction 5 Offset*

Transaction 6 LengthStatus Transaction 6 Offset*

Transaction 7 LengthStatus Transaction 7 Offset*

PG*

PG*

PG*

PG*

PG*

PG*

PG*

PG*

ioc

ioc

ioc

ioc

ioc

ioc

ioc

ioc

Buffer Pointer (Page 3) [31:12]

Reserved

33-30H

Buffer Pointer (Page 4) [31:12] Reserved 37-34H

Buffer Pointer (Page 5) [31:12] Reserved 3B-38H

Buffer Pointer (Page 6) [31:12] Reserved 3F-3CH

Mult

I/O

Reserved

Extended Buffer Pointer Page 0 [63:32] 43-40H

Extended Buffer Pointer Page 1 [63:32] 47-44H

Extended Buffer Pointer Page 2 [63:32] 4B-48H

Extended Buffer Pointer Page 3 [63:32] 4F-4CH

Extended Buffer Pointer Page 4 [63:32] 53-50H

Extended Buffer Pointer Page 5 [63:32] 57-54H

Extended Buffer Pointer Page 6 [63:32] 5B-58H

*Note:these fields may be modified
by the host controller if the I/O
field indicates an OUT.  

Figure B-1. 64-bit Isochronous Transaction Descriptor (iTD-64) 
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Next Link Pointer 0 Typ T 03-00H

07-04H

012345678910111213141516171819202122232425262728293031

0B-08H

Status

µFrame S-mask

Device AddressEndPt

Buffer Pointer (Page 0) [31:12]

0F-0CH

13-10H

1B-18H

Host Controller Read/Write Host Controller Read Only

Total Bytes to TransferP

Static Endpoint State

17-14H

ioc Reserved

R R

Current Offset

Buffer Pointer (Page 1) [31:12]

Back Pointer

Reserved

Transfer Results

µFrame C-mask

Hub AddrPort NumberI/O

Reserved

µFrame C-prog-mask

R

T-countTP

0 T

Extended Buffer Pointer Page 0 [63:32] 1F-1CH

Extended Buffer Pointer Page 1 [63:32] 23-20H

 

Figure B-2. 64-bit Split Transaction Isochronous Transaction Descriptor (siTD-64) 

 

012345678910111213141516171819202122232425262728293031

03-00H

07-04H

Next qTD Pointer T

0B-08H

0

Host Controller Read/Write Host Controller Read Only

0F-0CH

Alternate Next qTD Pointer T0

13-10H

17-14H

1B-18H

1F-1CH

StatusPID
Code

dt Total Bytes to Transfer CerrC_Pageioc

Buffer Pointer (page 0) [31:12] Current Offset

Buffer Pointer (page 1) [31:12] Reserved

Buffer Pointer (page 2) [31:12] Reserved

Buffer Pointer (page 3) [31:12] Reserved

Buffer Pointer (page 4) [31:12] Reserved

Transfer Results

Extended Buffer Pointer Page 0 [63:32] 23-20H

Extended Buffer Pointer Page 1 [63:32] 27-24H

Extended Buffer Pointer Page 2 [63:32] 2B-28H

Extended Buffer Pointer Page 3 [63:32] 2F-2CH

Extended Buffer Pointer Page 4 [63:32] 33-30H

 
Figure B-3. 64-bit Queue Element Transaction Descriptor (qTD-64) 
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Queue Head Horizontal Link Pointer 0 

Mult 

Typ T 03-00H

07-04H

0 1 2 3 4 5 6 7 8 9 101112131415161718192021 22 23 24 25 26 27 28 29 30 31 

Maximum Packet Length 

0B-08H

Current qTD Pointer 

Status Cerr 

EPS 

µFrame S-mask 

Device Address EndPt 

PID
Code 

Buffer Pointer (Page 0) [31:12] 

0F-0CH

13-10H

1B-18H

Host Controller Read/Write  Host Controller Read Only 

Total Bytes to Transfer 

0 

Next qTD Pointer T 

1F-1CH

0 

Transfer Overlay 

H

C_Page

Static Endpoint State 

17-14HAlternate Next qTD Pointer T 

iocdt 

dtc I

Buffer Pointer (Page 4) [31:12] 2F-2CH

NakCnt 

Current Offset 

Buffer Pointer (Page 1) [31:12] 23-20H

Buffer Pointer (Page 2) [31:12] 27-24H

Buffer Pointer (Page 3) [31:12] 2B-28H

Transfer Results

RL 

µFrame C-mask* Hub Addr* Port Number* 

* These fields are used exclusively to 
support split transactions to USB 2.0 
Hubs. 

C-prog-mask* 

FrameTag* 

Reserved 

S-bytes  

Reserved 

Reserved 

C 

Extended Buffer Pointer Page 0 [63:32] 33-30H

Extended Buffer Pointer Page 1 [63:32] 37-34H

Extended Buffer Pointer Page 2 [63:32] 3B-38H

Extended Buffer Pointer Page 3 [63:32] 3F-3CH

Extended Buffer Pointer Page 4 [63:32] 43-40H

 
Figure B-4. 64-bit Queue Head Descriptor (QH-64) 

Note: no 64-bit version of FSTNs are required. The upper 32-bits of the structure pointer must come from 
the CTRLDSSEGMENT register. 
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Appendix C.  Debug Port 
The debug port is an optional implementation feature. This appendix describes the required implementation 
and behavior of a USB2 Debug Port as part of an EHCI controller. Specific features of this implementation 
of a debug port are: 

•  Only works with a high-speed USB debug device 

•  Implemented for a specific port on the host controller 

•  Operational anytime the port is not suspended AND the host controller is in D0 power state. 

•  Capability is interrupted when port is driving USB RESET 

C.1 Locating the Debug Port 
The PCI Capability List5 is used to provide a standard way for software to find and use the Debug Port. 
Figure C-1 illustrates the Debug Port capability layout, which consist of three fields.  The CAP_ID is 
described in Table C-1, the NXT_PTR is described in Table C-2, and the DEBUG_PORT is described in 
Table C-3.   

DEBUG_PORT NXT_PTR CAP_ID 
Figure C-1. Debug Port Capability Register Layout 

 

Table C-1. CAP_ID 

Bits Type Field Description 

7:0 RO CAP_ID The value of 0Ah in this field identifies that the function supports a 
Debug Port. 

 

Table C-2. NXT_PTR 

Bits Type Field Description 

15:08 RO NXT_PTR Pointer to the next item in the capabilities list.  Must be NULL for 
the final item in the list.   

 

                                                           
5 PCI Capability List is defined in the PCI Local Bus Specification (Section 6.7 Capability List, Rev. 2.2, Dec. 
18, 1999). 



EHCI Revision 1.0 3/12/2002 

134   USB 2.0 

 

Table C-3. DEBUG_PORT 

Bits Type Field Description 

28:16 RO Offset This 12 bit field indicates the byte offset (up to 4K) within the BAR 
indicated by BAR#.  This offset is required to be DWORD aligned 
and therefore bits 16 and 17 are always zero. 

31:29 RO BAR # A 3-bit field, which indicates which one of the possible 6 Base 
Address Register offsets contains the Debug Port registers.  For 
example, a value of 1h indicates the first BAR (offset 10h) while a 
value of 5 indicates that the BAR at 20h.  This offset is 
independent as to whether the BAR is 32 or 64 bit.  For example, 
if the offset were 3 indicating that the BAR at offset 18h contains 
the Debug Port.  BARs at offset 10 and 14h may or may not be 
implemented.  This field is read only and only values 1-6h are 
valid. (A 64-bit BAR is allowed.) Only a memory BAR is allowed. 

C.2 Using the Debug Port Fields 
The Debug Port field is comprised of two sub-fields.  The first is OFFSET and the second is BAR#.  Figure 
C-2 illustrates how the fields are used by software to locate and access the Debug Port registers.  The arrow 
going from BAR# of the Debug Port Capability Register to the BARs field in the PCI configuration Space 
indicates that BAR# contains a “pointer” to a one BAR of the device in which the debug port registers are 
mapped.  

Debug Port Capability Register Layout

PCI Configuration Space

BARs…

Debug Port Reg.

CAP_ID = 0AhNXT_PTRBAR# Offset

10 -24h
n

BAR n Address Space
 

Figure C-2 Debug Port Capability Register 

OFFSET of the Debug Port Capability register is used as an offset into the address space assigned by the 
BAR.  Therefore software takes the base address and OFFSET to determine the start address of the Debug 
Port registers.  For example, the BAR is programmed with an address of 3000 0000h (3 gigabyte) and the 
offset is 20h (32 bytes).  Therefore, the base address of the Debug registers would be 3000 0020h. 

C.3 USB2 Debug Port Register Interface 
EHCI implementations use a PCI Capability structure, as defined above, to indicate that it provides a debug 
port.  USB2 debug ports register are located in the same memory area, defined by the Base Address Register 
(BAR), as the standard EHCI registers.  The specific EHCI port that supports this debug capability is 
indicated by a 4-bit field (bits 20-23) in the HCSPARAMS register of an EHCI controller. 
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Table C-4. Debug Port Control Register 

Register Name Offset 

Control/Status 0x00h 

USB PIDs 0x04h 

Data Buffer (Bytes 3-0) 0x08h 

Data Buffer (Bytes 7-4) 0x0Ch 

Device Address 0x10h 

C.3.1 Debug Port Control Register 
The Debug Port Control register (offset 0h) allows software to interact with the USB2 Debug Port.  The 
hardware associated with this register provides no checks to ensure that software programs the interface 
correctly.  How the hardware behaves when programmed illegally is undefined.  The definition of each bit or 
field in the control register is described in the table below.  Note: all bits in the control register can be 
written or read simultaneously.  Software is required to preserve reserved fields/bits by performing a read-
modify-write operation. Registers which have reset values will reset based on a HCReset, a D3-D0 
transition, or a PCI reset. 

Table C-5. Control/Status Register Bits 

Bits Type Field Description 

31 RO Reserved  

30 R/W Owner When debug software writes a one to this bit, the ownership of 
the debug port is forced to the EHCI controller (ie. immediately 
taken away from the companion controller).  If the port was 
already owned by the EHCI controller, then setting this bit is has 
no effect.  This bit overrides all of the ownership related bits in the 
standard EHCI registers.  Reset default = 0. Note that the value in 
this bit may not effect the value reported in the Port Owner bit in 
the associated PORTSC register. 

29 RO Reserved  

28 R/W  Enabled This bit is a one if the debug port is enabled for operation. 
Software can clear this by writing a zero to it.  The controller 
clears the bit for the same conditions where hardware sets the 
Port Enable/Disable Change bit (in the PORTSC register). (Note: 
this bit is not cleared when System Software clears the Port 
Enabled/Disabled bit (in the PORTSC register). Software can 
directly set this bit, if the port is already enabled in the associated 
Port Status and Control register (this is HW enforced). Reset 
default = 0. 

27:17 RO Reserved  

16 R/WC Done This bit is set by HW to indicate that the request is complete.  
Writing a 1 to this bit will clear it.  Writing a 0 to this bit has no 
effect.  Reset default = 0. 

15:11 RO Reserved  

10 R/W In Use Set by software to indicate that the port is in use.  Cleared by 
software to indicate that the port is free and may be used by other 
software.  Reset default = 0.  (This bit has no affect on hardware.) 
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Table C-5. Control/Status Register Bits (cont.) 

Bits Type Field Description 

9:7 RO Exception This field indicates the exception when Error/Good# is set.  This 
field cannot be cleared by software. Reset default = 000b. 

Value Meaning 
000b  None 
001b Transaction error or babble: indicates the USB2 

transaction had an error (CRC, bad PID, timeout, 
packet babble, etc.) 

010b HW error.  Request was attempted (or in progress) 
when port was suspended or reset. 

011b-111b Reserved 

6 RO Error/ 
Good# 

Updated by hardware at the same time it sets the Done bit. When 
set it indicates that an error occurred.  Details of the error are 
provided in the Exception field.  When cleared, it indicates that 
the request terminated successfully. Reset default = 0. 

5 R/W Go Software sets this bit to cause the hardware to perform a request. 
Writing this bit to a 1 when the bit is already set may result in 
undefined behavior. Writing a 0 to this bit has no effect. When 
set, the hardware clears this bit when the hardware sets the Done 
bit. (Completion of a request is indicated by the Done bit.)  Reset 
default = 0. 

4 R/W Write/ 
Read# 

Software sets this bit to indicate that the current request is a write 
and clears it to indicate a read.  Reset default = 0. 

3:0 R/W Data 
Length 

For write operations, this field is set by software to indicate to the 
hardware how many bytes of data in Data Buffer are to be 
transferred to the console when Write/Read# is set when 
software sets Go.  A value of 0h indicates that a zero-length 
packet should be sent.  A value of 1-8 indicates 1-8 bytes are to 
be transferred.  Values 9-Fh are illegal and how hardware 
behaves if used is undefined. 
For read operations, this field is set by hardware to indicate to 
software how many bytes in Data Buffer are valid in response to 
software setting Go when Write/Read# is cleared.  A value of 0h 
indicates that a zero length packet was returned.  (The state of 
Data Buffer is not defined.)  A value of 1-8 indicates 1-8 bytes 
were received.  Hardware is not allowed to return values in the 
range 9-Fh when the Error/Good# field is a zero (0b) after an IN 
transaction completes. The value in this field is not valid when the 
Error/Good# field is a one (1b) after an IN transaction completes.  
The transferring of data always starts with byte 0 in the data area 
and moves toward byte 7 until the transfer size is reached.  Reset 
default = 0h. 
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C.3.2 USB PIDs Register 
This Dword register is used to communicate PID information between the USB debug driver and the USB2 
debug port.  The debug port uses some of these fields to generate USB packets, and uses other fields to 
return PID information to the USB debug driver. 

Table C-6. USB PIDs Register 

Bits Type Field Description 

31:24 RO Reserved  

23:16 RO Received 
PID 

The debug port controller updates this field with the received PID 
for transactions in either direction.  When the controller is sending 
data (Write/Read# is asserted), this field is updated with the 
handshake PID that is received from the device.  When the host 
controller is receiving data (Write/Read# is not asserted), this field 
is updated with the data packet PID (if the device sent data), or 
the handshake PID (if the device NAKs the request).  This field is 
valid when the controller sets the Done bit to a one (1b) and the 
Error/Good# field in the Control/Status register is a zero. If a 
transaction completes (Done bit transitions to a one) with 
Error/Good# field set to a one, then the contents of this field are 
undefined. Reset default = undefined. 

15:8 R/W Send PID The debug port controller sends this PID to begin the data packet 
when sending data to USB (ie. Write/Read# is asserted).  
Software will typically set this field to either DATA0 or DATA1 PID 
values. Reset default = undefined. 

7:0 R/W Token 
PID 

The debug port controller sends this PID as the Token PID for 
each USB transaction.  Software will typically set this field to 
either IN, OUT or SETUP PID values. Reset default = undefined. 

 

C.3.3 Data Buffer 
The data buffer consists of 8 bytes arranged as two consecutive Dwords located at offset 08h and 0Ch in the 
debug port's register space.  Table C-7 provides more detail.  

Table C-7. Data Buffer 

Bits Type Field Description 

63:0 R/W Data 
Buffer 

The least significant byte is accessed at offset 08h and the most 
significant byte is accessed at offset 0Fh. Each byte in Data 
Buffer can be individually accessed.   
Data Buffer must be written with data before software initiates a 
write request.  For a read request, Data Buffer contains valid data 
when Done is set, Error/Good# is a zero (0b), and Data Length 
specifies the number of bytes that are valid. If an IN transaction 
completes (Done bit transitions to a one) with Error/Good# field 
set to a one, then the contents of this field are undefined. Reset 
default = undefined. 
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C.3.4 Device Address Register 
The Device Address register holds the information necessary to properly address the Debug Device when 
generating transactions.  It specifies the USB device address of the debug device, and the endpoint address 
for USB tokens generated by the debug port. 

Table C-8. Device Address Register 

Bits Type Field Description 

31:15 RO Reserved  

14:8 R/W USB 
Address 

7-bit field that identifies the USB device address used by the 
controller for all Token PID generation. This is a R/W field that is 
set to 7Fh after power-on reset. Reset default = 7Fh. 

7:4 RO Reserved  

3:0 R/W USB 
Endpoint 

4-bit field that identifies the endpoint used by the controller for all 
Token PID generation. Reset default = 01h. 

C.4 Operational Model 
There are two operational modes for the USB2 debug port.  Mode 1 is when the EHCI host controller is not 
running from the viewpoint of a standard EHCI Driver (e.g. HCHalted bit in the USBSTS register is a one). 
In Mode 1, controller is required to generate a ‘keepalive’ packet less than 2 milliseconds apart to keep the 
attached debug device from suspending.  The keepalive packet is a standalone 32-bit SYNC field.   

Mode 2 is when the host controller is running (ie. Run/Stop bit is 1). In Mode 2, the normal transmission of 
SOF packets (or SYNC keepalives if the PORTSC register Port Enable/Disable bit is a zero) will keep the 
debug device from suspending. 

In both modes, the controller must check for software requested debug transactions at least every 125usecs. 

If the debug port is enabled by the debug driver, and the standard host controller driver resets the USB port, 
USB debug transactions are completed with an exception condition (0b010) for the duration of the reset and 
until after the first SOF is sent. 

If the standard host controller driver suspends the USB port, then USB debug transactions are completed 
with an exception condition (0b010) for the duration of the suspend/resume sequence and until after the first 
SOF is sent. 

The Enabled port control bit in the debug register space is independent of the similar port control bit in the 
associated Port Status and Control register.   

The table below shows the debug port behavior related to the state of bits in the debug registers as well as 
bits in the associated Port Status and Control register. 

Table C-9. Summary of Port Behavior vs. Register Settings 

Debug bits EHCI bits 

Owner Enabled Port 
Enable 

Run/
Stop 

Suspend 

 
Debug port behavior 

0 X X X X Debug port is not being used.  Normal 
operation. 

1 0 X X X Debug port is not being used.  Normal 
operation. 

1 1 0 0 X Debug port in Mode 1.  SYNC keepalives sent 
plus debug traffic 
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Table C-9. Summary of Port Behavior vs. Register Settings (cont.) 

Debug bits EHCI bits 

Owner Enabled Port 
Enable 

Run/
Stop 

Suspend 

 
Debug port behavior 

1 1 0 1 X Debug port in Mode 2.  SYNC keepalives (or 
SOF's) sent plus debug transactions. Note 
that no other USB transactions are sent on 
this port, because the Port Enabled bit in the 
associated PORTSC register is a zero. 

1 1 1 0 0 Debug port in Mode 2. SYNC keepalives sent 
plus debug traffic. 

1 1 1 0 1 Port is suspended.  No debug traffic sent. 

1 1 1 1 0 Debug port in Mode 2.  Debug traffic is 
interspersed with normal traffic. 

1 1 1 1 1 Port is suspended. No debug traffic sent. 

C.4.1 OUT/SETUP Transactions 
When the debug port is enabled and the debug software sets the Go bit and the Write/Read# bit is set, then 
the debug controller is enabled to send a debug transaction that will send data to the debug device.  The 
controller sends a token packet consisting of a SYNC, the Token PID field, the Device Address field, the 
Endpoint field, followed by a 5-bit CRC field.  After sending the token packet, the controller sends a data 
packet consisting of a SYNC, the Send PID, Data Length bytes of data from the data registers, and a 16-bit 
CRC.  Note that a Data Length value of zero is valid in which case no data bytes would be included in the 
packet.  After sending the data packet, the controller waits for a handshake response from the debug device.  
If a handshake is received, the controller places the received PID in the Received PID register, resets the 
Error/Good# bit and set the Done bit.  If no handshake PID is received, then the controller sets the 
Exception field to 001b, sets the Error/Good# bit, and sets the Done bit. 

C.4.2 IN transactions 
When the debug port is enabled and the debug software sets the Go bit and the Write/Read# bit is reset, then 
the debug controller is enabled to send a debug transaction that will receive data from the debug device.  The 
controller sends a token packet consisting of a SYNC, the Token PID field, the Device Address field, and 
the Endpoint field, followed by a 5-bit CRC field.  After sending the token packet, the controller waits for a 
response from the debug device.  If a response is received, the received PID is placed into the Received PID 
register and any subsequent bytes are placed into the data registers.  The Data Length field is updated to 
show the number of bytes that were received after the PID.  If a valid packet was received from the device 
and it was one byte in total length (indicating it was a handshake packet) the controller resets the 
Error/Good# bit and sets the Done bit. If a valid packet was received from the device and it was more than 
one byte in total length (indicating it was a data packet), the controller transmits an ACK handshake packet, 
resets the Error/Good# bit and sets the Done bit.  If no valid packet is received, then the controller sets the 
Exception field to 001b, sets the Error/Good# bit, and sets the Done bit. 

C.4.3 Debug Software Startup 
There are two general cases for debug software startup: 1) when the EHCI controller has not been initialized 
by the system host controller driver, and 2) when the EHCI controller has been initialized by the system host 
controller driver.  Debug software generally knows what case it has to deal with (typically case 1), but can 
do further determination by examining the Configured bit in the EHCI CONFIGFLAG register.  If the 
configure flag is set, that indicates that the system host controller driver has already initialized the EHCI 
controller.  Generic startup procedures for the two cases are provided in the following sections. 
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C.4.3.1 Startup before System Host Controller Driver 
Debug software can attempt to use the debug port if after setting the Owner bit, the Current Connect Status 
bit in the appropriate PORTSC register is set.  Debug software should first reset the attached device by 
ensuring the host controller is running (Run/Stop bit in the USBCMD register is a one and HCHalted bit in 
the USBSTS register is a zero), then setting and then clearing the Port Reset bit in the PORTSC register. If a 
high-speed device is attached, the controller will automatically set the Port Enabled/Disabled bit in the 
PORTSC register and the debug software can proceed.  Debug software should set the Enabled bit in the 
Debug Port Control register, and then reset the Port Enabled/Disabled bit in the PORTSC register (so that 
the system host controller driver doesn't see an enabled port when it is first loaded). When the port reset 
sequence is complete, Debug software can then turn off the host controller by setting the Run/Stop bit to a 
zero. 

C.4.3.2 Startup after System Host Controller Driver 
If there is a device attached (indicated by the Current Connect Status bit in the PORTSC register), debug 
software can set the Owner bit in the Debug Port Control register and then directly set the Enabled bit in the 
Debug Port Control register. 

C.4.4 Finding the Debug Peripheral 
After enabling the debug port functionality, debug software can determine if a debug peripheral is attached 
by attempting to send data to the debug peripheral.  If all attempts result in an error (Exception field 
indicates Transaction Error), then the attached device is not a debug peripheral. 
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Appendix D. High Bandwidth Isochronous Rules 
High bandwidth isochronous streams utilize addition PIDs in the USB protocol. The tables in this appendix 
completely enumerate all of the required responses an EHCI controller must make in the execution of a 
high-bandwidth isochronous data stream. 

Each table is organized with the following fields: 

•  Inputs: lists the inputs or initial conditions for the behavioral data point. The input values are: 

•  Direction: indicates the direction of the transaction. 

•  Mult: this is the value of the Mult field in an instantiation of an iTD. This is a constant value for the 
lifetime of the iTD. It serves as the initial value for Cnt (see below). This field is set based on USB 
framework parameters provided by the device. It is not set relative to buffer size, etc. 

•  Cnt: this is the transaction iterator. It is the current value of an internal transaction counter that for 
an OUT, is initially loaded with the contents of Mult. For an IN, Cnt is initially set from the first 
bus transaction’s PID response (see below). 

•  Remaining Buffer: the amount of buffer remaining is indicated by the current value of the 
Transaction X Length field in the current transaction record. The initial value of this field is set by 
software to indicate the amount of buffering available for this transaction record. It is adjusted by 
the host controller as transactions are executed and data is moved.  

•  Response: lists the response from the device (PID code and data size) and the affects on the iTD status 
field bits and transaction iterator.  

•  PID/(data size): indicates the host stimulus, data PID or other response from the device. 

•  Result: list the effects of the response on the bits in the Status field and the iterator. 

Each row in each table illustrates the required host controller behavior for all of the inputs/response 
combinations for a high-bandwidth isochronous transaction. There are two tables in this appendix. The first 
enumerates the required behavior for OUT transactions and the second enumerates the required behavior for 
IN transactions. 
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Table D-1. High-Bandwidth Behavior for OUT Transactions 

Inputs Response Results 

Dir Mult Cnt Remaining Buffer PID (data size) Status 

 

Explanation 

1 

2 

3

1 ≥ Maxpacket PID → DATA0 (Maxpacket) 

PID → DATA1 (Maxpacket) 

PID → DATA2 (Maxpacket) 

Active → 0 Normal completion (for micro-frame) of 1, 2 or 3 high bandwidth transaction; 
send maxpacketsize bytes. 

Note that the ≥ Maxpacket where the > applies is just to account for the case 
where software has incorrectly programmed Mult or Transaction Length.  

1 

2 

3

1 < Maxpacket PID → DATA0 (Xfer Length) 

PID → DATA1 (Xfer Length) 

PID → DATA2 (Xfer Length) 

Active → 0 Normal completion (for frame) of 1, 2, or 3 high-bandwidth transaction; send 
as many bytes as are available in the buffer. 

3,2 2 > Maxpacket PID → MDATA (Maxpacket) Active → n/c Intermediate transaction in high-bandwidth sequence; send maxpacketsize 
bytes with an MDATA PID. 

2 

3 

2 ≤ Maxpacket PID → DATA0 (Xfer Length) 

PID → DATA1 (Xfer Length) 

Active → 0 Software did not have Mult*MaxpacketSize bytes to send for this transaction 
(micro-frame). 

3 3 > Maxpacket PID → MDATA (Maxpacket) Active → n/c Intermediate transaction in high-bandwidth sequence; send maxpacketsize 
bytes with an MDATA PID. 

3 3 ≤ Maxpacket PID → DATA0 (Xfer Length) Active → 0 Software did not have Mult*MaxpacketSize bytes to send for this transaction 
(micro-frame). 

Out 

3,2,1 >1 ≥ Maxpacket PID → MDATA (buffer error) Active → 0 

BuffErr → 1 

host experienced a buffer error before being able to deliver all of the data. It 
must not execute any further requests on this endpoint. 

Any time there is a buffer error (in this case a buffer under-run), the host controller will abandon the remaining portions of a high-bandwidth transaction. For 
example, if the current PID was an MDATA, and there was a buffer error on getting the data from main memory to the HC in a timely fashion, then the host 
controller will set the Buffer Error status bit to a one and immediately clear the Active status bit to a zero. This will cause the host controller to effectively 
skip the remaining bus transactions (if there was any pending, based on the value of Cnt). 
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The host controller’s requirements for managing a high-bandwidth IN bus transaction sequence are described using a state machine model. The model is 
summarized in the state-transition table Table D-2. This is only an example state machine whose intent is to define the operational requirements of the host 
controller.  

The intent of this section is to clearly define the appropriate data PID sequences for a high bandwidth isochronous data stream and set a priority on detection 
and reporting of errors that are detectable during a high-bandwidth transaction sequence.  

The premise of the high-bandwidth PID tracking state machine is that the sequence of DATA PIDs for the current micro-frame is determined by the device’s 
response to the first IN of the micro-frame. Based on PID response, the host controller sets an internal count variable (Cnt) that is used to drive the state 
machine through the remaining phases (states) of the high-bandwidth transaction sequence.  

Each micro-frame, the machine is initialized to the Start state. In this state, the value of the internal counter is a don’t care (X). The host controller issues the 
initial IN, and then sets the internal counter (Cnt) to the value number (Y) of the data PID received. For example, if the PID response is DATA2, then Cnt is 
loaded with the value ‘2’. When the PID is a DATA1 or DATA2, then two additional checks are performed. If neither of these checks fail, then the host 
controller transitions to the Next state. 

1. The size of the data payload must be equal to maximum packet length (Maxpacket), and 

2. The host controller must check that the starting PID response is in the range configured for this endpoint, as specified in Mult. If the PID value 
number (Y) is less than the value of Mult, then the received data PID is in the appropriate range. For example, if Mult is 2 and the device returns a 
DATA1, then Y=1 is less than Mult so the received PID is acceptable.  

When the PID received in the Start state is DATA0, then the high-bandwidth transaction is complete for this micro-frame and the host controller must set the 
Active bit to a zero. A valid DATA0 PID is allowed to have a data payload size less than or equal to Maxpacket. If a babble error is detected, then the host 
controller will additionally set the Babble bit to a one.  
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Table D-2. High-Bandwidth Behavior for IN Transactions 

Current state Endpoint Response 
Cnt PID[Y]  Data size 

Results Next State Explanation 

= Maxpacket  Cnt = [2,1] Acceptable PID response. If no babble error, then go 
to Next state. 

< Maxpacket Active → 0,  
XactErr → 1 

Done Data payload must be equal to maximum packet 
size.  

Y < Mult 

> Maxpacket Active → 0,  
Babble → 1 

Done Data payloads larger than maximum packet size are 
a babble condition.  

PID ← DATA[2,1] 

Y ≥ Mult Don’t care Active → 0,  
XactErr → 1 

Done Starting DATA PID is larger than allowed for this 
endpoint.  

≤ Maxpacket Active → 0 Done Acceptable PID response. If no babble error, 
transaction completed normally.  

Start X 

PID ← DATA0  

> Maxpacket Active → 0,  
Babble → 1 

Done Data payloads larger than maximum packet size are 
a babble condition.  

PID ← DATA2 Don’t care Active → 0,  
XactErr → 1 

Done Endpoint responded twice with DATA2 PID.  

= Maxpacket  Cnt = 1 Acceptable PID response. If no babble error, then go 
to Next state. 

< Maxpacket Active → 0,  
XactErr → 1 

Done Data payload must be equal to maximum packet 
size.  

PID ← DATA1 

> Maxpacket Active → 0,  
Babble → 1 

Done Data payloads larger than maximum packet size are 
a babble condition.  

2 

PID ← DATA0 Don’t care Active → 0,  
XactErr → 1 

Done Device went from DATA2 to DATA0; invalid 
transition.  

PID ← DATA[2,1] Don’t care Active → 0,  
XactErr → 1 

Done Endpoint repeated a DATA2 or DATA1 PID.  

≤ Maxpacket Active → 0 Done Acceptable PID response. If no babble error, 
transaction sequence completed normally. 

Next 

1 

PID ← DATA0  

> Maxpacket Active → 0,  
Babble → 1 

Done Data payloads larger than maximum packet size are 
a babble condition.  
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In the Next state, the host controller issues an IN token and checks the value number (Y) of the PID response against the value of the internal counter (Cnt). 
If the value number (Y) is equal to (Cnt – 1), then the PID response is correct and the host controller sets the internal counter (Cnt) to the value number of 
the data PID received.  

When the received PID response is acceptable and is a DATA1, then the host controller must also check that the size of the data payload is equal to the 
configured maximum packet length (Maxpacket).  If the length check passes, the PID check has passed and the host controller does a final babble check. If 
no babble error, the host controller remains in the Next state and executes another bus transaction.  If there was an error, the host controller sets the Active bit 
to a zero. If the length check fails, the host controller sets the XactErr to a one. If the babble check fails, the host controller sets the Babble bit to a one.   

When the received PID response is acceptable and is a DATA0, then the high-bandwidth transaction is complete for this micro-frame and the host controller 
must set the Active bit to a zero. The data payload is allowed to be less than or equal to the configured maximum packet size. If a babble error is detected , 
then the host controller will set the Babble bit to a one.  

Any time the individual transaction completes in a Timeout, the host controller will set the status bit Active to a zero and status bit XacErr to a one.  

Note that this state machine is for illustrative purposes. Implementations may optimize appropriately to avoid arithmetic operations where possible, as long 
as the resultant behavior is correct. 
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